{"title":"用于 ADAS 的车道检测、分割、坑洞检测和交通标志识别功能","authors":"Aishwarya Jadhav, Prajakta Sawant, Sujata Jawale","doi":"10.47392/irjaem.2024.0333","DOIUrl":null,"url":null,"abstract":"Lane detection, a critical aspect of advanced driver assistance systems (ADAS) and autonomous vehicles, is addressed in this work, combining classical computer vision methods with deep learning techniques. The proposed solution, utilizing a UNet-based model trained with TensorFlow and Keras, enhances vehicle perception for intelligent transportation systems. Integrated functionalities for pothole detection and traffic sign detection further contribute to safety and efficiency, enabling vehicles to identify road hazards and comply with regulations. The system encompasses data preprocessing, model training, and real-time video analysis, while a classical lane detection pipeline using OpenCV showcases various stages such as grayscale conversion, Gaussian blur, Canny edge detection, masking, Hough transform, and lane overlay. This comprehensive approach supports road safety, traffic management, and transportation efficiency initiatives, making significant strides in intelligent transportation systems and urban planning.","PeriodicalId":517878,"journal":{"name":"International Research Journal on Advanced Engineering and Management (IRJAEM)","volume":"57 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lane Detection, Segmentation, Pothole Detection and Traffic Sign Recognition for ADAS\",\"authors\":\"Aishwarya Jadhav, Prajakta Sawant, Sujata Jawale\",\"doi\":\"10.47392/irjaem.2024.0333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lane detection, a critical aspect of advanced driver assistance systems (ADAS) and autonomous vehicles, is addressed in this work, combining classical computer vision methods with deep learning techniques. The proposed solution, utilizing a UNet-based model trained with TensorFlow and Keras, enhances vehicle perception for intelligent transportation systems. Integrated functionalities for pothole detection and traffic sign detection further contribute to safety and efficiency, enabling vehicles to identify road hazards and comply with regulations. The system encompasses data preprocessing, model training, and real-time video analysis, while a classical lane detection pipeline using OpenCV showcases various stages such as grayscale conversion, Gaussian blur, Canny edge detection, masking, Hough transform, and lane overlay. This comprehensive approach supports road safety, traffic management, and transportation efficiency initiatives, making significant strides in intelligent transportation systems and urban planning.\",\"PeriodicalId\":517878,\"journal\":{\"name\":\"International Research Journal on Advanced Engineering and Management (IRJAEM)\",\"volume\":\"57 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Research Journal on Advanced Engineering and Management (IRJAEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47392/irjaem.2024.0333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal on Advanced Engineering and Management (IRJAEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47392/irjaem.2024.0333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lane Detection, Segmentation, Pothole Detection and Traffic Sign Recognition for ADAS
Lane detection, a critical aspect of advanced driver assistance systems (ADAS) and autonomous vehicles, is addressed in this work, combining classical computer vision methods with deep learning techniques. The proposed solution, utilizing a UNet-based model trained with TensorFlow and Keras, enhances vehicle perception for intelligent transportation systems. Integrated functionalities for pothole detection and traffic sign detection further contribute to safety and efficiency, enabling vehicles to identify road hazards and comply with regulations. The system encompasses data preprocessing, model training, and real-time video analysis, while a classical lane detection pipeline using OpenCV showcases various stages such as grayscale conversion, Gaussian blur, Canny edge detection, masking, Hough transform, and lane overlay. This comprehensive approach supports road safety, traffic management, and transportation efficiency initiatives, making significant strides in intelligent transportation systems and urban planning.