用于 ADAS 的车道检测、分割、坑洞检测和交通标志识别功能

Aishwarya Jadhav, Prajakta Sawant, Sujata Jawale
{"title":"用于 ADAS 的车道检测、分割、坑洞检测和交通标志识别功能","authors":"Aishwarya Jadhav, Prajakta Sawant, Sujata Jawale","doi":"10.47392/irjaem.2024.0333","DOIUrl":null,"url":null,"abstract":"Lane detection, a critical aspect of advanced driver assistance systems (ADAS) and autonomous vehicles, is addressed in this work, combining classical computer vision methods with deep learning techniques. The proposed solution, utilizing a UNet-based model trained with TensorFlow and Keras, enhances vehicle perception for intelligent transportation systems. Integrated functionalities for pothole detection and traffic sign detection further contribute to safety and efficiency, enabling vehicles to identify road hazards and comply with regulations. The system encompasses data preprocessing, model training, and real-time video analysis, while a classical lane detection pipeline using OpenCV showcases various stages such as grayscale conversion, Gaussian blur, Canny edge detection, masking, Hough transform, and lane overlay. This comprehensive approach supports road safety, traffic management, and transportation efficiency initiatives, making significant strides in intelligent transportation systems and urban planning.","PeriodicalId":517878,"journal":{"name":"International Research Journal on Advanced Engineering and Management (IRJAEM)","volume":"57 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lane Detection, Segmentation, Pothole Detection and Traffic Sign Recognition for ADAS\",\"authors\":\"Aishwarya Jadhav, Prajakta Sawant, Sujata Jawale\",\"doi\":\"10.47392/irjaem.2024.0333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lane detection, a critical aspect of advanced driver assistance systems (ADAS) and autonomous vehicles, is addressed in this work, combining classical computer vision methods with deep learning techniques. The proposed solution, utilizing a UNet-based model trained with TensorFlow and Keras, enhances vehicle perception for intelligent transportation systems. Integrated functionalities for pothole detection and traffic sign detection further contribute to safety and efficiency, enabling vehicles to identify road hazards and comply with regulations. The system encompasses data preprocessing, model training, and real-time video analysis, while a classical lane detection pipeline using OpenCV showcases various stages such as grayscale conversion, Gaussian blur, Canny edge detection, masking, Hough transform, and lane overlay. This comprehensive approach supports road safety, traffic management, and transportation efficiency initiatives, making significant strides in intelligent transportation systems and urban planning.\",\"PeriodicalId\":517878,\"journal\":{\"name\":\"International Research Journal on Advanced Engineering and Management (IRJAEM)\",\"volume\":\"57 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Research Journal on Advanced Engineering and Management (IRJAEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47392/irjaem.2024.0333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal on Advanced Engineering and Management (IRJAEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47392/irjaem.2024.0333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

车道检测是高级驾驶辅助系统(ADAS)和自动驾驶汽车的一个重要方面,本研究将经典计算机视觉方法与深度学习技术相结合,解决了这一问题。所提出的解决方案采用了用 TensorFlow 和 Keras 训练的基于 UNet 的模型,增强了智能交通系统的车辆感知能力。坑洞检测和交通标志检测的集成功能进一步提高了安全性和效率,使车辆能够识别道路危险并遵守法规。该系统包括数据预处理、模型训练和实时视频分析,而使用 OpenCV 的经典车道检测流水线则展示了灰度转换、高斯模糊、Canny 边缘检测、遮蔽、Hough 变换和车道叠加等各个阶段。这种综合方法支持道路安全、交通管理和交通效率计划,在智能交通系统和城市规划方面取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lane Detection, Segmentation, Pothole Detection and Traffic Sign Recognition for ADAS
Lane detection, a critical aspect of advanced driver assistance systems (ADAS) and autonomous vehicles, is addressed in this work, combining classical computer vision methods with deep learning techniques. The proposed solution, utilizing a UNet-based model trained with TensorFlow and Keras, enhances vehicle perception for intelligent transportation systems. Integrated functionalities for pothole detection and traffic sign detection further contribute to safety and efficiency, enabling vehicles to identify road hazards and comply with regulations. The system encompasses data preprocessing, model training, and real-time video analysis, while a classical lane detection pipeline using OpenCV showcases various stages such as grayscale conversion, Gaussian blur, Canny edge detection, masking, Hough transform, and lane overlay. This comprehensive approach supports road safety, traffic management, and transportation efficiency initiatives, making significant strides in intelligent transportation systems and urban planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信