{"title":"探索提高园艺作物品质的快速、用户友好型战略","authors":"Diksha Sharma, Bhumi Ruhil, Anubhav Dubey, Divya Jain, Deepika Bhatia, Georgios Koubouris","doi":"10.3390/horticulturae10080779","DOIUrl":null,"url":null,"abstract":"Climatic changes and global warming affect the growth, development, and productivity of crops. In this review, we highlight the possible benefits of using innovative breeding techniques like clustered regularly interspaced short palindromic repeats (CRISPRs), exogenous phytohormone-like strigolactones (SLs), nanomaterials (NMs), and beneficial microbial endophytes to address the challenges in sustainable cultivation of horticultural crops. These applications are evaluated by examining how they affect different metabolic, morphological, and biochemical parameters in diverse crops. Endophytes are symbiotic microorganisms and can be used as nematicides for improving crop yield. With an emphasis on quality control, we examined the impacts of applying NMs, a novel family of phytohormones called SLs, and microbial endophytes on horticultural commodities. Furthermore, we reviewed the benefits of CRISPR for the editing of plant genomes, as well as how it affects gene expression and transcription factors to increase crop tolerance and yield. These innovations hold the potential to improve crop yield, quality, and resilience by acting as safe, natural components in biofertilizers and plant protection solutions. Gradually adopting these methods could decrease reliance on agrochemicals, thereby reducing their negative effects on biodiversity, soil fertility, and human health.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking Rapid and User-Friendly Strategies to Improve Horticultural Crop Qualities\",\"authors\":\"Diksha Sharma, Bhumi Ruhil, Anubhav Dubey, Divya Jain, Deepika Bhatia, Georgios Koubouris\",\"doi\":\"10.3390/horticulturae10080779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climatic changes and global warming affect the growth, development, and productivity of crops. In this review, we highlight the possible benefits of using innovative breeding techniques like clustered regularly interspaced short palindromic repeats (CRISPRs), exogenous phytohormone-like strigolactones (SLs), nanomaterials (NMs), and beneficial microbial endophytes to address the challenges in sustainable cultivation of horticultural crops. These applications are evaluated by examining how they affect different metabolic, morphological, and biochemical parameters in diverse crops. Endophytes are symbiotic microorganisms and can be used as nematicides for improving crop yield. With an emphasis on quality control, we examined the impacts of applying NMs, a novel family of phytohormones called SLs, and microbial endophytes on horticultural commodities. Furthermore, we reviewed the benefits of CRISPR for the editing of plant genomes, as well as how it affects gene expression and transcription factors to increase crop tolerance and yield. These innovations hold the potential to improve crop yield, quality, and resilience by acting as safe, natural components in biofertilizers and plant protection solutions. Gradually adopting these methods could decrease reliance on agrochemicals, thereby reducing their negative effects on biodiversity, soil fertility, and human health.\",\"PeriodicalId\":13034,\"journal\":{\"name\":\"Horticulturae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulturae\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/horticulturae10080779\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/horticulturae10080779","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
Unlocking Rapid and User-Friendly Strategies to Improve Horticultural Crop Qualities
Climatic changes and global warming affect the growth, development, and productivity of crops. In this review, we highlight the possible benefits of using innovative breeding techniques like clustered regularly interspaced short palindromic repeats (CRISPRs), exogenous phytohormone-like strigolactones (SLs), nanomaterials (NMs), and beneficial microbial endophytes to address the challenges in sustainable cultivation of horticultural crops. These applications are evaluated by examining how they affect different metabolic, morphological, and biochemical parameters in diverse crops. Endophytes are symbiotic microorganisms and can be used as nematicides for improving crop yield. With an emphasis on quality control, we examined the impacts of applying NMs, a novel family of phytohormones called SLs, and microbial endophytes on horticultural commodities. Furthermore, we reviewed the benefits of CRISPR for the editing of plant genomes, as well as how it affects gene expression and transcription factors to increase crop tolerance and yield. These innovations hold the potential to improve crop yield, quality, and resilience by acting as safe, natural components in biofertilizers and plant protection solutions. Gradually adopting these methods could decrease reliance on agrochemicals, thereby reducing their negative effects on biodiversity, soil fertility, and human health.