{"title":"分子对流在时间分辨热透镜中的影响:计算探索","authors":"Aman Sharma, Debabrata Goswami","doi":"10.1088/1361-6463/ad6673","DOIUrl":null,"url":null,"abstract":"\n In this study, we comprehensively investigate Thermal lens (TL) spectroscopy, known for its ultra-sensitivity in probing molecular properties through nonlinear heating responses to femtosecond lasers. Using time-resolved TL spectroscopy and numerical simulations, we focus on the influence of convection on heat generation and the resulting phase shift in the probe beam. We examined single-beam, dual-beam same wavelength, and dual-beam different wavelength scenarios, systematically investigating power dependence, pump beam spot size, and sample length limitations. Our findings reveal a direct relationship between the TL effect and pump power, resulting in decreased probe beam transmittance with increasing convection. Additionally, the thermal lens strength grows within the Rayleigh regime as the sample length increases. Utilizing the same wavelength for the probe beam enhances the thermal lens effect in dual-beam setups. Notably, tight focusing of the pump beam substantially reduces the lag between convection and conduction. Our empirical results closely match the experimental data, providing a thorough explanation of the TL process and its underlying principles. These insights can be applied to design and optimize TL-based optical devices and systems for higher sensitivity, highlighting the potential of TL spectroscopy in advanced molecular property probing.","PeriodicalId":507822,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"80 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of molecular convection in time-resolved thermal lensing: a computational exploration\",\"authors\":\"Aman Sharma, Debabrata Goswami\",\"doi\":\"10.1088/1361-6463/ad6673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, we comprehensively investigate Thermal lens (TL) spectroscopy, known for its ultra-sensitivity in probing molecular properties through nonlinear heating responses to femtosecond lasers. Using time-resolved TL spectroscopy and numerical simulations, we focus on the influence of convection on heat generation and the resulting phase shift in the probe beam. We examined single-beam, dual-beam same wavelength, and dual-beam different wavelength scenarios, systematically investigating power dependence, pump beam spot size, and sample length limitations. Our findings reveal a direct relationship between the TL effect and pump power, resulting in decreased probe beam transmittance with increasing convection. Additionally, the thermal lens strength grows within the Rayleigh regime as the sample length increases. Utilizing the same wavelength for the probe beam enhances the thermal lens effect in dual-beam setups. Notably, tight focusing of the pump beam substantially reduces the lag between convection and conduction. Our empirical results closely match the experimental data, providing a thorough explanation of the TL process and its underlying principles. These insights can be applied to design and optimize TL-based optical devices and systems for higher sensitivity, highlighting the potential of TL spectroscopy in advanced molecular property probing.\",\"PeriodicalId\":507822,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":\"80 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad6673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad6673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of molecular convection in time-resolved thermal lensing: a computational exploration
In this study, we comprehensively investigate Thermal lens (TL) spectroscopy, known for its ultra-sensitivity in probing molecular properties through nonlinear heating responses to femtosecond lasers. Using time-resolved TL spectroscopy and numerical simulations, we focus on the influence of convection on heat generation and the resulting phase shift in the probe beam. We examined single-beam, dual-beam same wavelength, and dual-beam different wavelength scenarios, systematically investigating power dependence, pump beam spot size, and sample length limitations. Our findings reveal a direct relationship between the TL effect and pump power, resulting in decreased probe beam transmittance with increasing convection. Additionally, the thermal lens strength grows within the Rayleigh regime as the sample length increases. Utilizing the same wavelength for the probe beam enhances the thermal lens effect in dual-beam setups. Notably, tight focusing of the pump beam substantially reduces the lag between convection and conduction. Our empirical results closely match the experimental data, providing a thorough explanation of the TL process and its underlying principles. These insights can be applied to design and optimize TL-based optical devices and systems for higher sensitivity, highlighting the potential of TL spectroscopy in advanced molecular property probing.