Shahla Thasni P., Sandra E, Najil N, Muhammed Saneed PP, Jithma T
{"title":"使用人发和铝纤维加固混凝土的比较研究","authors":"Shahla Thasni P., Sandra E, Najil N, Muhammed Saneed PP, Jithma T","doi":"10.46610/jocbme.2024.v010i02.004","DOIUrl":null,"url":null,"abstract":"This study investigates the efficacy of human hair and aluminum fibres as reinforcements in concrete, analyzing their impact on compressive, flexural, and tensile strengths. Different fibre percentages (0%, 0.5%, 1%, and 1.5% by weight of cement) are systematically incorporated into concrete mixtures. Compressive strength tests on cubes, flexural strength assessments on beams, and tensile strength evaluations on cylinders reveal insights into the material's load-bearing, bending, and stretching capacities. Human hair-reinforced concrete showed significant improvements in compressive strength. Results indicate a gradual strength increase in Human Hair Fibre Reinforced Concrete (HHFRC) up to an optimal percentage. At the same time, Aluminum Fibre Reinforced Concrete (AFRC) shows significant enhancement in higher fibre content. AFRC's superior mechanical properties stem from aluminum fibres high tensile strength and stiffness, enhancing bond formation and resulting in denser, stronger concrete. These findings inform the selection of fibre reinforcement for concrete structures tailored to specific project needs.","PeriodicalId":170482,"journal":{"name":"Journal of Construction and Building Materials Engineering","volume":"83 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Study of Reinforced Concrete Using Human Hair and Aluminum Fibres\",\"authors\":\"Shahla Thasni P., Sandra E, Najil N, Muhammed Saneed PP, Jithma T\",\"doi\":\"10.46610/jocbme.2024.v010i02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the efficacy of human hair and aluminum fibres as reinforcements in concrete, analyzing their impact on compressive, flexural, and tensile strengths. Different fibre percentages (0%, 0.5%, 1%, and 1.5% by weight of cement) are systematically incorporated into concrete mixtures. Compressive strength tests on cubes, flexural strength assessments on beams, and tensile strength evaluations on cylinders reveal insights into the material's load-bearing, bending, and stretching capacities. Human hair-reinforced concrete showed significant improvements in compressive strength. Results indicate a gradual strength increase in Human Hair Fibre Reinforced Concrete (HHFRC) up to an optimal percentage. At the same time, Aluminum Fibre Reinforced Concrete (AFRC) shows significant enhancement in higher fibre content. AFRC's superior mechanical properties stem from aluminum fibres high tensile strength and stiffness, enhancing bond formation and resulting in denser, stronger concrete. These findings inform the selection of fibre reinforcement for concrete structures tailored to specific project needs.\",\"PeriodicalId\":170482,\"journal\":{\"name\":\"Journal of Construction and Building Materials Engineering\",\"volume\":\"83 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Construction and Building Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46610/jocbme.2024.v010i02.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Construction and Building Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46610/jocbme.2024.v010i02.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Study of Reinforced Concrete Using Human Hair and Aluminum Fibres
This study investigates the efficacy of human hair and aluminum fibres as reinforcements in concrete, analyzing their impact on compressive, flexural, and tensile strengths. Different fibre percentages (0%, 0.5%, 1%, and 1.5% by weight of cement) are systematically incorporated into concrete mixtures. Compressive strength tests on cubes, flexural strength assessments on beams, and tensile strength evaluations on cylinders reveal insights into the material's load-bearing, bending, and stretching capacities. Human hair-reinforced concrete showed significant improvements in compressive strength. Results indicate a gradual strength increase in Human Hair Fibre Reinforced Concrete (HHFRC) up to an optimal percentage. At the same time, Aluminum Fibre Reinforced Concrete (AFRC) shows significant enhancement in higher fibre content. AFRC's superior mechanical properties stem from aluminum fibres high tensile strength and stiffness, enhancing bond formation and resulting in denser, stronger concrete. These findings inform the selection of fibre reinforcement for concrete structures tailored to specific project needs.