{"title":"广义膨胀幂级数分布的最大似然估计","authors":"Robert L. Paige","doi":"10.1007/s40745-024-00560-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we first define the class of Generalized Inflated Power Series Distributions (GIPSDs) which contain the inflated discrete distributions most often seen in practice as special cases. We describe the hitherto unkown exponential family structure of GIPSDs and use this to derive closed-form, easy to program, conditional and unconditional maximum likelihood estimators for essentially any number of parameters. We also show how the GIPSD exponential family can be extended to model deflated mass points. Our results provide easy access to likelihood-based inference and automated model selection procedures for GIPSDs that only involve one-dimensional numerical root-finding problems that are easily solved with simple routines. We consider four real-data examples which illustrate the utility and scope of our results.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"12 4","pages":"1189 - 1209"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum Likelihood Estimation for Generalized Inflated Power Series Distributions\",\"authors\":\"Robert L. Paige\",\"doi\":\"10.1007/s40745-024-00560-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we first define the class of Generalized Inflated Power Series Distributions (GIPSDs) which contain the inflated discrete distributions most often seen in practice as special cases. We describe the hitherto unkown exponential family structure of GIPSDs and use this to derive closed-form, easy to program, conditional and unconditional maximum likelihood estimators for essentially any number of parameters. We also show how the GIPSD exponential family can be extended to model deflated mass points. Our results provide easy access to likelihood-based inference and automated model selection procedures for GIPSDs that only involve one-dimensional numerical root-finding problems that are easily solved with simple routines. We consider four real-data examples which illustrate the utility and scope of our results.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":\"12 4\",\"pages\":\"1189 - 1209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-024-00560-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00560-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
Maximum Likelihood Estimation for Generalized Inflated Power Series Distributions
In this paper we first define the class of Generalized Inflated Power Series Distributions (GIPSDs) which contain the inflated discrete distributions most often seen in practice as special cases. We describe the hitherto unkown exponential family structure of GIPSDs and use this to derive closed-form, easy to program, conditional and unconditional maximum likelihood estimators for essentially any number of parameters. We also show how the GIPSD exponential family can be extended to model deflated mass points. Our results provide easy access to likelihood-based inference and automated model selection procedures for GIPSDs that only involve one-dimensional numerical root-finding problems that are easily solved with simple routines. We consider four real-data examples which illustrate the utility and scope of our results.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.