{"title":"基于波导的分环谐振器用于 380 千兆赫附近的窄带滤波器","authors":"Samantha Leigh Williams, S. Reising","doi":"10.3390/electronics13152894","DOIUrl":null,"url":null,"abstract":"This work addresses the design of sub-terahertz narrow-band resonators for high performance and low-cost manufacturability. The intended application for these resonators is to realize narrow-band filters for passive millimeter-wave sounding of upper atmospheric humidity using the 380 GHz water vapor absorption line. Various narrow-band resonator designs and manufacturing processes were considered for this application. A design based on a waveguide split-ring resonator topology was selected to be developed and manufactured using laser machining. Experimental results are presented and compared with results from simulations for ten narrow-band resonators fabricated with a design center frequency in the WR-2.2 (325–500 GHz) waveguide band.","PeriodicalId":504598,"journal":{"name":"Electronics","volume":"105 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Waveguide-Based Split-Ring Resonators for Narrow-Band Filters Near 380 GHz\",\"authors\":\"Samantha Leigh Williams, S. Reising\",\"doi\":\"10.3390/electronics13152894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work addresses the design of sub-terahertz narrow-band resonators for high performance and low-cost manufacturability. The intended application for these resonators is to realize narrow-band filters for passive millimeter-wave sounding of upper atmospheric humidity using the 380 GHz water vapor absorption line. Various narrow-band resonator designs and manufacturing processes were considered for this application. A design based on a waveguide split-ring resonator topology was selected to be developed and manufactured using laser machining. Experimental results are presented and compared with results from simulations for ten narrow-band resonators fabricated with a design center frequency in the WR-2.2 (325–500 GHz) waveguide band.\",\"PeriodicalId\":504598,\"journal\":{\"name\":\"Electronics\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13152894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electronics13152894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Waveguide-Based Split-Ring Resonators for Narrow-Band Filters Near 380 GHz
This work addresses the design of sub-terahertz narrow-band resonators for high performance and low-cost manufacturability. The intended application for these resonators is to realize narrow-band filters for passive millimeter-wave sounding of upper atmospheric humidity using the 380 GHz water vapor absorption line. Various narrow-band resonator designs and manufacturing processes were considered for this application. A design based on a waveguide split-ring resonator topology was selected to be developed and manufactured using laser machining. Experimental results are presented and compared with results from simulations for ten narrow-band resonators fabricated with a design center frequency in the WR-2.2 (325–500 GHz) waveguide band.