{"title":"水葫芦作为可持续生物质用于生物燃料生产和水生生态系统植物修复的共同效益","authors":"Kamrun Nahar, S. A. Sunny","doi":"10.3390/fuels5030018","DOIUrl":null,"url":null,"abstract":"The water hyacinth (WH), also known as Eichhornia crassipes, is Bangladesh’s fast-growing and rapidly expanding sustainable aquatic bioenergy feedstock. The WH, as an energy crop, has been harnessed as a phytoremediation agent to purify contaminated water and produce fuel and environmentally friendly products. A country’s economy relies on the availability of raw materials for energy production, cleaning life-supporting abiotic resources for consumption, and the innovation of cost-effective, eco-friendly products. The present study focuses on a three-in-one nexus using the WH to purify polluted water, the (post-purification) biomass to produce clean energy fuels (biogas and bioethanol), and for the manufacture of daily-use products. The ability of the WH, an aquatic macrophyte, to act as a phytoremediator to improve the quality of eutrophic lake water in a laboratory setting was investigated. Water samples were collected from four lakes surrounding the urban community in Dhaka, Bangladesh. The potential to remove salts and solutes and improve the physio-chemical properties of water, including pH, dissolved oxygen (DO), electrical conductivity (EC), total dissolved solids (TDSs), turbidity, and NaCl concentration, were assessed. During the aquatic macrophyte treatment, a 100% WH survival rate was shown, with no visible toxicity symptoms observed in the biomass. The WH improved water quality after one week, as determined by a significant decrease in turbidity, EC, NaCl, and TDSs, and improved pH and DO levels. Here, we establish the WH’s proficiency in removing nutrients/solutes and improving water quality. In addition, we discuss the utilization of this invasive aquatic biomass to produce energy after remediation of water including cost-effective and eco-friendly products to incur daily life with environmental and socioeconomic benefits in Bangladesh.","PeriodicalId":514548,"journal":{"name":"Fuels","volume":"107 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-Benefits of Eichhornia Crassipes (Water Hyacinth) as Sustainable Biomass for Biofuel Production and Aquatic Ecosystem Phytoremediation\",\"authors\":\"Kamrun Nahar, S. A. Sunny\",\"doi\":\"10.3390/fuels5030018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The water hyacinth (WH), also known as Eichhornia crassipes, is Bangladesh’s fast-growing and rapidly expanding sustainable aquatic bioenergy feedstock. The WH, as an energy crop, has been harnessed as a phytoremediation agent to purify contaminated water and produce fuel and environmentally friendly products. A country’s economy relies on the availability of raw materials for energy production, cleaning life-supporting abiotic resources for consumption, and the innovation of cost-effective, eco-friendly products. The present study focuses on a three-in-one nexus using the WH to purify polluted water, the (post-purification) biomass to produce clean energy fuels (biogas and bioethanol), and for the manufacture of daily-use products. The ability of the WH, an aquatic macrophyte, to act as a phytoremediator to improve the quality of eutrophic lake water in a laboratory setting was investigated. Water samples were collected from four lakes surrounding the urban community in Dhaka, Bangladesh. The potential to remove salts and solutes and improve the physio-chemical properties of water, including pH, dissolved oxygen (DO), electrical conductivity (EC), total dissolved solids (TDSs), turbidity, and NaCl concentration, were assessed. During the aquatic macrophyte treatment, a 100% WH survival rate was shown, with no visible toxicity symptoms observed in the biomass. The WH improved water quality after one week, as determined by a significant decrease in turbidity, EC, NaCl, and TDSs, and improved pH and DO levels. Here, we establish the WH’s proficiency in removing nutrients/solutes and improving water quality. In addition, we discuss the utilization of this invasive aquatic biomass to produce energy after remediation of water including cost-effective and eco-friendly products to incur daily life with environmental and socioeconomic benefits in Bangladesh.\",\"PeriodicalId\":514548,\"journal\":{\"name\":\"Fuels\",\"volume\":\"107 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuels\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fuels5030018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fuels5030018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Co-Benefits of Eichhornia Crassipes (Water Hyacinth) as Sustainable Biomass for Biofuel Production and Aquatic Ecosystem Phytoremediation
The water hyacinth (WH), also known as Eichhornia crassipes, is Bangladesh’s fast-growing and rapidly expanding sustainable aquatic bioenergy feedstock. The WH, as an energy crop, has been harnessed as a phytoremediation agent to purify contaminated water and produce fuel and environmentally friendly products. A country’s economy relies on the availability of raw materials for energy production, cleaning life-supporting abiotic resources for consumption, and the innovation of cost-effective, eco-friendly products. The present study focuses on a three-in-one nexus using the WH to purify polluted water, the (post-purification) biomass to produce clean energy fuels (biogas and bioethanol), and for the manufacture of daily-use products. The ability of the WH, an aquatic macrophyte, to act as a phytoremediator to improve the quality of eutrophic lake water in a laboratory setting was investigated. Water samples were collected from four lakes surrounding the urban community in Dhaka, Bangladesh. The potential to remove salts and solutes and improve the physio-chemical properties of water, including pH, dissolved oxygen (DO), electrical conductivity (EC), total dissolved solids (TDSs), turbidity, and NaCl concentration, were assessed. During the aquatic macrophyte treatment, a 100% WH survival rate was shown, with no visible toxicity symptoms observed in the biomass. The WH improved water quality after one week, as determined by a significant decrease in turbidity, EC, NaCl, and TDSs, and improved pH and DO levels. Here, we establish the WH’s proficiency in removing nutrients/solutes and improving water quality. In addition, we discuss the utilization of this invasive aquatic biomass to produce energy after remediation of water including cost-effective and eco-friendly products to incur daily life with environmental and socioeconomic benefits in Bangladesh.