Ki Yoon Kim, Huiho Jeong, Ji Hoo Kim, Byeongkyu Min, C. Cho, Ho-Young Soh, Yasuhiro Ishibashi, Hyeon-Seo Cho
{"title":"基于韩国南部海域表层海水水质参数的微塑料分布特征(2019 年","authors":"Ki Yoon Kim, Huiho Jeong, Ji Hoo Kim, Byeongkyu Min, C. Cho, Ho-Young Soh, Yasuhiro Ishibashi, Hyeon-Seo Cho","doi":"10.3390/su16156272","DOIUrl":null,"url":null,"abstract":"The present study determined the microplastic distributions in the surface water of the Southern Sea of Korea (SS01–SS09) in September 2019, depending on three groups (Groups A, B, and C) categorized via the principal component analysis and cluster analysis using the water quality parameters (water temperature, salinity, pH, dissolved oxygen, suspended particulate matter, and chlorophyll-a). The microplastic samples in the surface water were collected using a 300 μm-mesh neuston net. The microplastic abundance ranged from 0.10 to 5.08 (average 0.71 ± 1.64) particles/m3 in the entire sampling area. Median values in Groups A (SS01, SS02, and SS07), B (SS05, SS08, and SS09), and C (SS03, SS04, and SS06) were 0.14 ± 0.02, 0.12 ± 0.14, and 0.17 ± 2.85 particles/m3, respectively, and there were no statistically significant differences (p < 0.050). However, it was highlighted that the most considerably numerous microplastic abundance in SS04 (5.08 particles/m3) revealed relatively high water temperatures distinguished from other sampling areas. Polystyrene, consisting mainly of expanded polystyrene, was the predominant polymer type, accounting for 81.5% in Groups A, 84.4% in B, and 97.0% in C. The particle size in Group C (average 3.11 ± 1.08 mm) was statistically larger (p < 0.001) than those of Groups A (average 0.71 ± 1.06 mm) and B (average 0.98 ± 1.22 mm). Only fragment and sheet shapes were found in all the sampling points and the former, which consisted of the secondary microplastics regardless of the groups, was the dominant type. The fragment composition gradually increased from 77.3% in Group A, 96.7% in B, to 99.1% in C. However, the strategy studies should be investigated in the foreseeable future to supplement the current study limitations, such as verifying the effect of the Yangtze River and the Tsushima warm current, and seasonal fluctuation.","PeriodicalId":509360,"journal":{"name":"Sustainability","volume":"99 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microplastic Distribution Characteristics Considering the Marine Environment Based on Surface Seawater Quality Parameters in Southern Sea of Korea, 2019\",\"authors\":\"Ki Yoon Kim, Huiho Jeong, Ji Hoo Kim, Byeongkyu Min, C. Cho, Ho-Young Soh, Yasuhiro Ishibashi, Hyeon-Seo Cho\",\"doi\":\"10.3390/su16156272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study determined the microplastic distributions in the surface water of the Southern Sea of Korea (SS01–SS09) in September 2019, depending on three groups (Groups A, B, and C) categorized via the principal component analysis and cluster analysis using the water quality parameters (water temperature, salinity, pH, dissolved oxygen, suspended particulate matter, and chlorophyll-a). The microplastic samples in the surface water were collected using a 300 μm-mesh neuston net. The microplastic abundance ranged from 0.10 to 5.08 (average 0.71 ± 1.64) particles/m3 in the entire sampling area. Median values in Groups A (SS01, SS02, and SS07), B (SS05, SS08, and SS09), and C (SS03, SS04, and SS06) were 0.14 ± 0.02, 0.12 ± 0.14, and 0.17 ± 2.85 particles/m3, respectively, and there were no statistically significant differences (p < 0.050). However, it was highlighted that the most considerably numerous microplastic abundance in SS04 (5.08 particles/m3) revealed relatively high water temperatures distinguished from other sampling areas. Polystyrene, consisting mainly of expanded polystyrene, was the predominant polymer type, accounting for 81.5% in Groups A, 84.4% in B, and 97.0% in C. The particle size in Group C (average 3.11 ± 1.08 mm) was statistically larger (p < 0.001) than those of Groups A (average 0.71 ± 1.06 mm) and B (average 0.98 ± 1.22 mm). Only fragment and sheet shapes were found in all the sampling points and the former, which consisted of the secondary microplastics regardless of the groups, was the dominant type. The fragment composition gradually increased from 77.3% in Group A, 96.7% in B, to 99.1% in C. However, the strategy studies should be investigated in the foreseeable future to supplement the current study limitations, such as verifying the effect of the Yangtze River and the Tsushima warm current, and seasonal fluctuation.\",\"PeriodicalId\":509360,\"journal\":{\"name\":\"Sustainability\",\"volume\":\"99 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/su16156272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/su16156272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microplastic Distribution Characteristics Considering the Marine Environment Based on Surface Seawater Quality Parameters in Southern Sea of Korea, 2019
The present study determined the microplastic distributions in the surface water of the Southern Sea of Korea (SS01–SS09) in September 2019, depending on three groups (Groups A, B, and C) categorized via the principal component analysis and cluster analysis using the water quality parameters (water temperature, salinity, pH, dissolved oxygen, suspended particulate matter, and chlorophyll-a). The microplastic samples in the surface water were collected using a 300 μm-mesh neuston net. The microplastic abundance ranged from 0.10 to 5.08 (average 0.71 ± 1.64) particles/m3 in the entire sampling area. Median values in Groups A (SS01, SS02, and SS07), B (SS05, SS08, and SS09), and C (SS03, SS04, and SS06) were 0.14 ± 0.02, 0.12 ± 0.14, and 0.17 ± 2.85 particles/m3, respectively, and there were no statistically significant differences (p < 0.050). However, it was highlighted that the most considerably numerous microplastic abundance in SS04 (5.08 particles/m3) revealed relatively high water temperatures distinguished from other sampling areas. Polystyrene, consisting mainly of expanded polystyrene, was the predominant polymer type, accounting for 81.5% in Groups A, 84.4% in B, and 97.0% in C. The particle size in Group C (average 3.11 ± 1.08 mm) was statistically larger (p < 0.001) than those of Groups A (average 0.71 ± 1.06 mm) and B (average 0.98 ± 1.22 mm). Only fragment and sheet shapes were found in all the sampling points and the former, which consisted of the secondary microplastics regardless of the groups, was the dominant type. The fragment composition gradually increased from 77.3% in Group A, 96.7% in B, to 99.1% in C. However, the strategy studies should be investigated in the foreseeable future to supplement the current study limitations, such as verifying the effect of the Yangtze River and the Tsushima warm current, and seasonal fluctuation.