救灾无人机网络中基于智能手机的任务调度

Lin Li, Zhenchuan Wang, Jinqi Zhu, Shizhao Ma
{"title":"救灾无人机网络中基于智能手机的任务调度","authors":"Lin Li, Zhenchuan Wang, Jinqi Zhu, Shizhao Ma","doi":"10.3390/electronics13152903","DOIUrl":null,"url":null,"abstract":"Earthquake disasters are usually very destructive and pose a great threat to human life and property. Based on the relatively mature technology of unmanned aerial vehicles (UAVs) and their high flexibility, these devices are widely used for information collection and processing in post-disaster relief operations. However, UAVs are limited by their battery capacity, which makes it hard for them to perform both large-scale information gathering and data processing at the same time. Nowadays, smartphones (SPs), which have become portable devices for people, have the characteristics of strong computing power, rich communication means and wide distribution. Therefore, in this study, we developed SPs to assist UAVs in computation incentive-based task execution. To balance the cost of UAVs and the execution utility of SPs during the task execution process, a multi-objective optimization problem was established, and the Multi-Objective Mutation-Immune Bat (MOMIB) algorithm was developed to optimize the proposed problem. Additionally, considering the diversity of tasks in real-world scenarios, Quality of Service (QoS) coefficients were introduced to ensure the performance requirements of different types of tasks. A large number of simulation experiments show that the task-offloading scheme that we propose is effective.","PeriodicalId":504598,"journal":{"name":"Electronics","volume":"139 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smartphone-Based Task Scheduling in UAV Networks for Disaster Relief\",\"authors\":\"Lin Li, Zhenchuan Wang, Jinqi Zhu, Shizhao Ma\",\"doi\":\"10.3390/electronics13152903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Earthquake disasters are usually very destructive and pose a great threat to human life and property. Based on the relatively mature technology of unmanned aerial vehicles (UAVs) and their high flexibility, these devices are widely used for information collection and processing in post-disaster relief operations. However, UAVs are limited by their battery capacity, which makes it hard for them to perform both large-scale information gathering and data processing at the same time. Nowadays, smartphones (SPs), which have become portable devices for people, have the characteristics of strong computing power, rich communication means and wide distribution. Therefore, in this study, we developed SPs to assist UAVs in computation incentive-based task execution. To balance the cost of UAVs and the execution utility of SPs during the task execution process, a multi-objective optimization problem was established, and the Multi-Objective Mutation-Immune Bat (MOMIB) algorithm was developed to optimize the proposed problem. Additionally, considering the diversity of tasks in real-world scenarios, Quality of Service (QoS) coefficients were introduced to ensure the performance requirements of different types of tasks. A large number of simulation experiments show that the task-offloading scheme that we propose is effective.\",\"PeriodicalId\":504598,\"journal\":{\"name\":\"Electronics\",\"volume\":\"139 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13152903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electronics13152903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地震灾害通常具有很强的破坏性,对人类的生命和财产构成巨大威胁。基于无人机(UAVs)相对成熟的技术及其高度的灵活性,这些设备被广泛用于灾后救援行动中的信息收集和处理。然而,无人飞行器受电池容量的限制,很难同时进行大规模的信息收集和数据处理。如今,智能手机(SP)已成为人们的便携式设备,具有计算能力强、通信手段丰富、传播范围广等特点。因此,在本研究中,我们开发了SP来辅助无人机执行基于计算激励的任务。为了在任务执行过程中平衡无人机的成本和SP的执行效用,我们建立了一个多目标优化问题,并开发了多目标突变-免疫蝙蝠(MOMIB)算法来优化所提出的问题。此外,考虑到实际场景中任务的多样性,还引入了服务质量(QoS)系数,以确保不同类型任务的性能要求。大量模拟实验表明,我们提出的任务卸载方案是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smartphone-Based Task Scheduling in UAV Networks for Disaster Relief
Earthquake disasters are usually very destructive and pose a great threat to human life and property. Based on the relatively mature technology of unmanned aerial vehicles (UAVs) and their high flexibility, these devices are widely used for information collection and processing in post-disaster relief operations. However, UAVs are limited by their battery capacity, which makes it hard for them to perform both large-scale information gathering and data processing at the same time. Nowadays, smartphones (SPs), which have become portable devices for people, have the characteristics of strong computing power, rich communication means and wide distribution. Therefore, in this study, we developed SPs to assist UAVs in computation incentive-based task execution. To balance the cost of UAVs and the execution utility of SPs during the task execution process, a multi-objective optimization problem was established, and the Multi-Objective Mutation-Immune Bat (MOMIB) algorithm was developed to optimize the proposed problem. Additionally, considering the diversity of tasks in real-world scenarios, Quality of Service (QoS) coefficients were introduced to ensure the performance requirements of different types of tasks. A large number of simulation experiments show that the task-offloading scheme that we propose is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信