{"title":"粗粒化模型揭示了轴突长度分布的普遍指数缩放规律","authors":"Máté Józsa, Mária Ercsey-Ravasz, Z. Lázár","doi":"10.1088/2632-072x/ad66a6","DOIUrl":null,"url":null,"abstract":"\n The Exponential Distance Rule (EDR) is a well-documented phenomenon suggesting that the distribution of axonal lengths in the brain follows an exponential decay pattern. Nevertheless, individual-level axon data supporting this assertion is limited to Drosophila and mice, while inter-region connectome data is also accessible for macaques, marmosets, and humans. Although axon-level data in Drosophila and mice support the generality of the EDR, region-level data can significantly deviate from the exponential curve. In this study, we establish that the axon number-weighted length distribution of region-level connections converges onto a universal curve when rescaled to the mean axonal length, demonstrating similarities across different species. To explain these observations, we present a simple mathematical model that attributes the observed deviations from the EDR in the weighted length distribution of inter-regional connectomes to the inherent coarse-graining effect of translating from neuron-level to region-level connectomics. We demonstrate that the qualitative predictions of the model are robust with respect to various aspects of brain region-geometry, including dimensionality, resolution, and curvature. On the other hand, the performance of the model exhibits a monotonous dependence on the amount of region-geometry related detail incorporated into the model. The findings validate the universality of the EDR rule across various species, paving the way for further in-depth exploration of this remarkably simple principle.","PeriodicalId":516285,"journal":{"name":"Journal of Physics: Complexity","volume":"139 47","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coarse-graining model reveals universal exponential scaling in axonal length distributions\",\"authors\":\"Máté Józsa, Mária Ercsey-Ravasz, Z. Lázár\",\"doi\":\"10.1088/2632-072x/ad66a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Exponential Distance Rule (EDR) is a well-documented phenomenon suggesting that the distribution of axonal lengths in the brain follows an exponential decay pattern. Nevertheless, individual-level axon data supporting this assertion is limited to Drosophila and mice, while inter-region connectome data is also accessible for macaques, marmosets, and humans. Although axon-level data in Drosophila and mice support the generality of the EDR, region-level data can significantly deviate from the exponential curve. In this study, we establish that the axon number-weighted length distribution of region-level connections converges onto a universal curve when rescaled to the mean axonal length, demonstrating similarities across different species. To explain these observations, we present a simple mathematical model that attributes the observed deviations from the EDR in the weighted length distribution of inter-regional connectomes to the inherent coarse-graining effect of translating from neuron-level to region-level connectomics. We demonstrate that the qualitative predictions of the model are robust with respect to various aspects of brain region-geometry, including dimensionality, resolution, and curvature. On the other hand, the performance of the model exhibits a monotonous dependence on the amount of region-geometry related detail incorporated into the model. The findings validate the universality of the EDR rule across various species, paving the way for further in-depth exploration of this remarkably simple principle.\",\"PeriodicalId\":516285,\"journal\":{\"name\":\"Journal of Physics: Complexity\",\"volume\":\"139 47\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-072x/ad66a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072x/ad66a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coarse-graining model reveals universal exponential scaling in axonal length distributions
The Exponential Distance Rule (EDR) is a well-documented phenomenon suggesting that the distribution of axonal lengths in the brain follows an exponential decay pattern. Nevertheless, individual-level axon data supporting this assertion is limited to Drosophila and mice, while inter-region connectome data is also accessible for macaques, marmosets, and humans. Although axon-level data in Drosophila and mice support the generality of the EDR, region-level data can significantly deviate from the exponential curve. In this study, we establish that the axon number-weighted length distribution of region-level connections converges onto a universal curve when rescaled to the mean axonal length, demonstrating similarities across different species. To explain these observations, we present a simple mathematical model that attributes the observed deviations from the EDR in the weighted length distribution of inter-regional connectomes to the inherent coarse-graining effect of translating from neuron-level to region-level connectomics. We demonstrate that the qualitative predictions of the model are robust with respect to various aspects of brain region-geometry, including dimensionality, resolution, and curvature. On the other hand, the performance of the model exhibits a monotonous dependence on the amount of region-geometry related detail incorporated into the model. The findings validate the universality of the EDR rule across various species, paving the way for further in-depth exploration of this remarkably simple principle.