M. Kadkhodaei, Ebrahim Ghasemi, Jian Zhou, Melika Zahraei
{"title":"利用基因表达编程和决策树-支持向量机模型评估地下硬岩矿柱稳定性","authors":"M. Kadkhodaei, Ebrahim Ghasemi, Jian Zhou, Melika Zahraei","doi":"10.1002/dug2.12115","DOIUrl":null,"url":null,"abstract":"Assessing the stability of pillars in underground mines (especially in deep underground mines) is a critical concern during both the design and the operational phases of a project. This study mainly focuses on developing two practical models to predict pillar stability status. For this purpose, two robust models were developed using a database including 236 case histories from seven underground hard rock mines, based on gene expression programming (GEP) and decision tree‐support vector machine (DT‐SVM) hybrid algorithms. The performance of the developed models was evaluated based on four common statistical criteria (sensitivity, specificity, Matthews correlation coefficient, and accuracy), receiver operating characteristic (ROC) curve, and testing data sets. The results showed that the GEP and DT‐SVM models performed exceptionally well in assessing pillar stability, showing a high level of accuracy. The DT‐SVM model, in particular, outperformed the GEP model (accuracy of 0.914, sensitivity of 0.842, specificity of 0.929, Matthews correlation coefficient of 0.767, and area under the ROC of 0.897 for the test data set). Furthermore, upon comparing the developed models with the previous ones, it was revealed that both models can effectively determine the condition of pillar stability with low uncertainty and acceptable accuracy. This suggests that these models could serve as dependable tools for project managers, aiding in the evaluation of pillar stability during the design and operational phases of mining projects, despite the inherent challenges in this domain.","PeriodicalId":505870,"journal":{"name":"Deep Underground Science and Engineering","volume":"70 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of underground hard rock mine pillar stability using gene expression programming and decision tree‐support vector machine models\",\"authors\":\"M. Kadkhodaei, Ebrahim Ghasemi, Jian Zhou, Melika Zahraei\",\"doi\":\"10.1002/dug2.12115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assessing the stability of pillars in underground mines (especially in deep underground mines) is a critical concern during both the design and the operational phases of a project. This study mainly focuses on developing two practical models to predict pillar stability status. For this purpose, two robust models were developed using a database including 236 case histories from seven underground hard rock mines, based on gene expression programming (GEP) and decision tree‐support vector machine (DT‐SVM) hybrid algorithms. The performance of the developed models was evaluated based on four common statistical criteria (sensitivity, specificity, Matthews correlation coefficient, and accuracy), receiver operating characteristic (ROC) curve, and testing data sets. The results showed that the GEP and DT‐SVM models performed exceptionally well in assessing pillar stability, showing a high level of accuracy. The DT‐SVM model, in particular, outperformed the GEP model (accuracy of 0.914, sensitivity of 0.842, specificity of 0.929, Matthews correlation coefficient of 0.767, and area under the ROC of 0.897 for the test data set). Furthermore, upon comparing the developed models with the previous ones, it was revealed that both models can effectively determine the condition of pillar stability with low uncertainty and acceptable accuracy. This suggests that these models could serve as dependable tools for project managers, aiding in the evaluation of pillar stability during the design and operational phases of mining projects, despite the inherent challenges in this domain.\",\"PeriodicalId\":505870,\"journal\":{\"name\":\"Deep Underground Science and Engineering\",\"volume\":\"70 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Deep Underground Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/dug2.12115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep Underground Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/dug2.12115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of underground hard rock mine pillar stability using gene expression programming and decision tree‐support vector machine models
Assessing the stability of pillars in underground mines (especially in deep underground mines) is a critical concern during both the design and the operational phases of a project. This study mainly focuses on developing two practical models to predict pillar stability status. For this purpose, two robust models were developed using a database including 236 case histories from seven underground hard rock mines, based on gene expression programming (GEP) and decision tree‐support vector machine (DT‐SVM) hybrid algorithms. The performance of the developed models was evaluated based on four common statistical criteria (sensitivity, specificity, Matthews correlation coefficient, and accuracy), receiver operating characteristic (ROC) curve, and testing data sets. The results showed that the GEP and DT‐SVM models performed exceptionally well in assessing pillar stability, showing a high level of accuracy. The DT‐SVM model, in particular, outperformed the GEP model (accuracy of 0.914, sensitivity of 0.842, specificity of 0.929, Matthews correlation coefficient of 0.767, and area under the ROC of 0.897 for the test data set). Furthermore, upon comparing the developed models with the previous ones, it was revealed that both models can effectively determine the condition of pillar stability with low uncertainty and acceptable accuracy. This suggests that these models could serve as dependable tools for project managers, aiding in the evaluation of pillar stability during the design and operational phases of mining projects, despite the inherent challenges in this domain.