样本不平衡背景下基于 I-CNN 和 JMMD 的离心风机轴承故障诊断

Yang Gao, Xueyi Li
{"title":"样本不平衡背景下基于 I-CNN 和 JMMD 的离心风机轴承故障诊断","authors":"Yang Gao, Xueyi Li","doi":"10.17531/ein/191459","DOIUrl":null,"url":null,"abstract":"The fault diagnosis is an effective technical means to improve the reliability of centrifugal fan bearings. The serious imbalance of data is one of the important issues facing bearing fault diagnosis.In this paper, a transfer learning-based fault diagnosis method for Centrifugal fan bearings is proposed, utilizing the improved CNN (I-CNN) and Joint Maximum Mean Discrepancy (JMMD) algorithms. The raw vibration signals of the bearings are enhanced through fast Fourier transform for feature representation. The signals are then processed by parallel multi-scale CNNs with an embedded Squeeze-and-Excitation (SE) attention to focus on key features. Furthermore, the JMMD is introduced as a metric for quantifying the disparity between the source and target domains, thereby mitigating domain shift. In the loss function, weight factors and scaling factors are introduced to increase attention on minority samples and easily confused samples within the imbalanced dataset. The proposed method is validated on the Centrifugal fan bearing dataset from Jiangnan University and the CWRU dataset.","PeriodicalId":508934,"journal":{"name":"Eksploatacja i Niezawodność – Maintenance and Reliability","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Diagnosis of Centrifugal fan Bearings Based on I-CNN and JMMD in the Context of Sample Imbalance\",\"authors\":\"Yang Gao, Xueyi Li\",\"doi\":\"10.17531/ein/191459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fault diagnosis is an effective technical means to improve the reliability of centrifugal fan bearings. The serious imbalance of data is one of the important issues facing bearing fault diagnosis.In this paper, a transfer learning-based fault diagnosis method for Centrifugal fan bearings is proposed, utilizing the improved CNN (I-CNN) and Joint Maximum Mean Discrepancy (JMMD) algorithms. The raw vibration signals of the bearings are enhanced through fast Fourier transform for feature representation. The signals are then processed by parallel multi-scale CNNs with an embedded Squeeze-and-Excitation (SE) attention to focus on key features. Furthermore, the JMMD is introduced as a metric for quantifying the disparity between the source and target domains, thereby mitigating domain shift. In the loss function, weight factors and scaling factors are introduced to increase attention on minority samples and easily confused samples within the imbalanced dataset. The proposed method is validated on the Centrifugal fan bearing dataset from Jiangnan University and the CWRU dataset.\",\"PeriodicalId\":508934,\"journal\":{\"name\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17531/ein/191459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja i Niezawodność – Maintenance and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17531/ein/191459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

故障诊断是提高离心风机轴承可靠性的有效技术手段。数据严重失衡是轴承故障诊断面临的重要问题之一。本文提出了一种基于迁移学习的离心风机轴承故障诊断方法,利用了改进型 CNN(I-CNN)和联合最大均差(JMMD)算法。轴承的原始振动信号通过快速傅立叶变换进行特征表示。然后,信号由并行多尺度 CNN 处理,内嵌挤压-激发 (SE) 关注,以聚焦关键特征。此外,还引入了 JMMD 作为量化源域和目标域之间差异的指标,从而减轻域偏移。在损失函数中,引入了权重因子和缩放因子,以增加对不平衡数据集中少数样本和易混样本的关注。所提出的方法在江南大学离心风机轴承数据集和 CWRU 数据集上进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Diagnosis of Centrifugal fan Bearings Based on I-CNN and JMMD in the Context of Sample Imbalance
The fault diagnosis is an effective technical means to improve the reliability of centrifugal fan bearings. The serious imbalance of data is one of the important issues facing bearing fault diagnosis.In this paper, a transfer learning-based fault diagnosis method for Centrifugal fan bearings is proposed, utilizing the improved CNN (I-CNN) and Joint Maximum Mean Discrepancy (JMMD) algorithms. The raw vibration signals of the bearings are enhanced through fast Fourier transform for feature representation. The signals are then processed by parallel multi-scale CNNs with an embedded Squeeze-and-Excitation (SE) attention to focus on key features. Furthermore, the JMMD is introduced as a metric for quantifying the disparity between the source and target domains, thereby mitigating domain shift. In the loss function, weight factors and scaling factors are introduced to increase attention on minority samples and easily confused samples within the imbalanced dataset. The proposed method is validated on the Centrifugal fan bearing dataset from Jiangnan University and the CWRU dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信