利用医学知识图谱和大型语言模型加强精神障碍信息提取

IF 2.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Future Internet Pub Date : 2024-07-24 DOI:10.3390/fi16080260
Chaelim Park, Hayoung Lee, O. Jeong
{"title":"利用医学知识图谱和大型语言模型加强精神障碍信息提取","authors":"Chaelim Park, Hayoung Lee, O. Jeong","doi":"10.3390/fi16080260","DOIUrl":null,"url":null,"abstract":"The accurate diagnosis and effective treatment of mental health disorders such as depression remain challenging owing to the complex underlying causes and varied symptomatology. Traditional information extraction methods struggle to adapt to evolving diagnostic criteria such as the Diagnostic and Statistical Manual of Mental Disorders fifth edition (DSM-5) and to contextualize rich patient data effectively. This study proposes a novel approach for enhancing information extraction from mental health data by integrating medical knowledge graphs and large language models (LLMs). Our method leverages the structured organization of knowledge graphs specifically designed for the rich domain of mental health, combined with the powerful predictive capabilities and zero-shot learning abilities of LLMs. This research enhances the quality of knowledge graphs through entity linking and demonstrates superiority over traditional information extraction techniques, making a significant contribution to the field of mental health. It enables a more fine-grained analysis of the data and the development of new applications. Our approach redefines the manner in which mental health data are extracted and utilized. By integrating these insights with existing healthcare applications, the groundwork is laid for the development of real-time patient monitoring systems. The performance evaluation of this knowledge graph highlights its effectiveness and reliability, indicating significant advancements in automating medical data processing and depression management.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Medical Knowledge Graphs and Large Language Models for Enhanced Mental Disorder Information Extraction\",\"authors\":\"Chaelim Park, Hayoung Lee, O. Jeong\",\"doi\":\"10.3390/fi16080260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accurate diagnosis and effective treatment of mental health disorders such as depression remain challenging owing to the complex underlying causes and varied symptomatology. Traditional information extraction methods struggle to adapt to evolving diagnostic criteria such as the Diagnostic and Statistical Manual of Mental Disorders fifth edition (DSM-5) and to contextualize rich patient data effectively. This study proposes a novel approach for enhancing information extraction from mental health data by integrating medical knowledge graphs and large language models (LLMs). Our method leverages the structured organization of knowledge graphs specifically designed for the rich domain of mental health, combined with the powerful predictive capabilities and zero-shot learning abilities of LLMs. This research enhances the quality of knowledge graphs through entity linking and demonstrates superiority over traditional information extraction techniques, making a significant contribution to the field of mental health. It enables a more fine-grained analysis of the data and the development of new applications. Our approach redefines the manner in which mental health data are extracted and utilized. By integrating these insights with existing healthcare applications, the groundwork is laid for the development of real-time patient monitoring systems. The performance evaluation of this knowledge graph highlights its effectiveness and reliability, indicating significant advancements in automating medical data processing and depression management.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi16080260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16080260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

抑郁症等精神疾病的潜在病因复杂,症状多样,因此对其进行准确诊断和有效治疗仍具有挑战性。传统的信息提取方法难以适应不断发展的诊断标准,如《精神障碍诊断与统计手册》第五版(DSM-5),也无法有效地将丰富的患者数据上下文化。本研究提出了一种新方法,通过整合医学知识图谱和大型语言模型(LLMs)来加强心理健康数据的信息提取。我们的方法利用了专为丰富的心理健康领域设计的知识图谱的结构化组织,并结合了 LLMs 强大的预测能力和零点学习能力。这项研究通过实体链接提高了知识图谱的质量,并显示出优于传统信息提取技术的优势,为心理健康领域做出了重大贡献。它能对数据进行更精细的分析,并开发出新的应用。我们的方法重新定义了提取和利用心理健康数据的方式。通过将这些见解与现有的医疗保健应用相结合,为开发病人实时监控系统奠定了基础。该知识图谱的性能评估凸显了其有效性和可靠性,表明在医疗数据自动化处理和抑郁症管理方面取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Medical Knowledge Graphs and Large Language Models for Enhanced Mental Disorder Information Extraction
The accurate diagnosis and effective treatment of mental health disorders such as depression remain challenging owing to the complex underlying causes and varied symptomatology. Traditional information extraction methods struggle to adapt to evolving diagnostic criteria such as the Diagnostic and Statistical Manual of Mental Disorders fifth edition (DSM-5) and to contextualize rich patient data effectively. This study proposes a novel approach for enhancing information extraction from mental health data by integrating medical knowledge graphs and large language models (LLMs). Our method leverages the structured organization of knowledge graphs specifically designed for the rich domain of mental health, combined with the powerful predictive capabilities and zero-shot learning abilities of LLMs. This research enhances the quality of knowledge graphs through entity linking and demonstrates superiority over traditional information extraction techniques, making a significant contribution to the field of mental health. It enables a more fine-grained analysis of the data and the development of new applications. Our approach redefines the manner in which mental health data are extracted and utilized. By integrating these insights with existing healthcare applications, the groundwork is laid for the development of real-time patient monitoring systems. The performance evaluation of this knowledge graph highlights its effectiveness and reliability, indicating significant advancements in automating medical data processing and depression management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Future Internet
Future Internet Computer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍: Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信