覆盖作物和轮迹对阿肯色州东部棉花生产土壤特性的影响

IF 1.3 Q3 AGRONOMY
Shelby G. Lebeau, Kristofor R. Brye, Michael Daniels, Lisa S. Wood
{"title":"覆盖作物和轮迹对阿肯色州东部棉花生产土壤特性的影响","authors":"Shelby G. Lebeau,&nbsp;Kristofor R. Brye,&nbsp;Michael Daniels,&nbsp;Lisa S. Wood","doi":"10.1002/agg2.20549","DOIUrl":null,"url":null,"abstract":"<p>Repetitive use of heavy farm machinery in cultivated agriculture may cause soil compaction that can adversely affect soil-health-related properties. Cover crops (CC) are well-documented to alleviate problems associated with compaction and improve overall soil health in time. The objective of this field study was to evaluate the cumulative effects of CC treatment (i.e., with ≥ 6 years cereal rye [<i>Secale cereale</i> L.] CC and ≥ 4 years with no cover crop [NCC]) and sample/measurement placement (i.e., in the bed [B] and in the wheel-track [WT] and no-wheel-track [NWT] furrow) on near-surface soil physical-, chemical-, and infiltration-related properties in an alluvial soil under cotton (<i>Gossypium hirsutum</i> L.) production in the Lower Mississippi River Valley. Samples were collected and in-situ measurements were conducted in late May 2019 within a single field in eastern Arkansas. Overall-infiltration rate was two times greater (<i>p</i> ≤ 0.01) in B compared to WT and NWT placement, which did not differ. Soil bulk density in WT was 1.1 times greater than the other two placements, while soil organic matter was greater in CC-WT (30.7 Mg ha<sup>−1</sup>) than in all other treatment-placement combinations, except for CC-NWT, which did not differ. Similarly, water-stable-aggregate concentration was 2.3 and 1.6 times greater in the CC-NWT and CC-WT combinations, respectively, which did not differ, compared to under NCC. Results demonstrated that CC benefits extended beyond the bed to positively affect soil properties in adjacent WT and NWT furrows. Continued small-scale, long-term management studies using CC will extend insight into site-specific, soil-health improvements.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20549","citationCount":"0","resultStr":"{\"title\":\"Cover crop and wheel-track effects on soil properties under cotton production in eastern Arkansas\",\"authors\":\"Shelby G. Lebeau,&nbsp;Kristofor R. Brye,&nbsp;Michael Daniels,&nbsp;Lisa S. Wood\",\"doi\":\"10.1002/agg2.20549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Repetitive use of heavy farm machinery in cultivated agriculture may cause soil compaction that can adversely affect soil-health-related properties. Cover crops (CC) are well-documented to alleviate problems associated with compaction and improve overall soil health in time. The objective of this field study was to evaluate the cumulative effects of CC treatment (i.e., with ≥ 6 years cereal rye [<i>Secale cereale</i> L.] CC and ≥ 4 years with no cover crop [NCC]) and sample/measurement placement (i.e., in the bed [B] and in the wheel-track [WT] and no-wheel-track [NWT] furrow) on near-surface soil physical-, chemical-, and infiltration-related properties in an alluvial soil under cotton (<i>Gossypium hirsutum</i> L.) production in the Lower Mississippi River Valley. Samples were collected and in-situ measurements were conducted in late May 2019 within a single field in eastern Arkansas. Overall-infiltration rate was two times greater (<i>p</i> ≤ 0.01) in B compared to WT and NWT placement, which did not differ. Soil bulk density in WT was 1.1 times greater than the other two placements, while soil organic matter was greater in CC-WT (30.7 Mg ha<sup>−1</sup>) than in all other treatment-placement combinations, except for CC-NWT, which did not differ. Similarly, water-stable-aggregate concentration was 2.3 and 1.6 times greater in the CC-NWT and CC-WT combinations, respectively, which did not differ, compared to under NCC. Results demonstrated that CC benefits extended beyond the bed to positively affect soil properties in adjacent WT and NWT furrows. Continued small-scale, long-term management studies using CC will extend insight into site-specific, soil-health improvements.</p>\",\"PeriodicalId\":7567,\"journal\":{\"name\":\"Agrosystems, Geosciences & Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20549\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agrosystems, Geosciences & Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agg2.20549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agrosystems, Geosciences & Environment","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agg2.20549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

在耕作农业中重复使用重型农机可能会造成土壤板结,从而对土壤健康相关特性产生不利影响。有充分证据表明,覆盖作物(CC)可缓解与板结相关的问题,并及时改善整体土壤健康状况。这项田间研究的目的是评估 CC 处理(即≥ 6 年的黑麦 [Secale cereale L.] CC 和≥ 4 年的无覆盖作物 [NCC])和样本/测量位置(即、在密西西比河下游河谷生产棉花(Gossypium hirsutum L.)的冲积土壤中,床面[B]、轮迹[WT]和无轮迹[NWT]沟中取样/测量对近表层土壤物理、化学和渗透相关特性的影响。2019 年 5 月下旬,在阿肯色州东部的一块田地中采集了样本并进行了原位测量。与没有差异的 WT 和 NWT 相比,B 的总渗透率高出两倍(p ≤ 0.01)。WT 的土壤容重是其他两种土壤容重的 1.1 倍,而 CC-WT 的土壤有机质(30.7 兆克/公顷-1)则高于所有其他处理-放置组合,但 CC-NWT 除外,两者没有差异。同样,与 NCC 相比,CC-NWT 和 CC-WT 组合的水稳定集聚物浓度分别高出 2.3 倍和 1.6 倍,两者没有差异。结果表明,CC 的益处超出了床面,对邻近的 WT 和 NWT 沟的土壤特性产生了积极影响。继续使用 CC 进行小规模、长期的管理研究将有助于深入了解特定地点的土壤健康改善情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cover crop and wheel-track effects on soil properties under cotton production in eastern Arkansas

Cover crop and wheel-track effects on soil properties under cotton production in eastern Arkansas

Repetitive use of heavy farm machinery in cultivated agriculture may cause soil compaction that can adversely affect soil-health-related properties. Cover crops (CC) are well-documented to alleviate problems associated with compaction and improve overall soil health in time. The objective of this field study was to evaluate the cumulative effects of CC treatment (i.e., with ≥ 6 years cereal rye [Secale cereale L.] CC and ≥ 4 years with no cover crop [NCC]) and sample/measurement placement (i.e., in the bed [B] and in the wheel-track [WT] and no-wheel-track [NWT] furrow) on near-surface soil physical-, chemical-, and infiltration-related properties in an alluvial soil under cotton (Gossypium hirsutum L.) production in the Lower Mississippi River Valley. Samples were collected and in-situ measurements were conducted in late May 2019 within a single field in eastern Arkansas. Overall-infiltration rate was two times greater (p ≤ 0.01) in B compared to WT and NWT placement, which did not differ. Soil bulk density in WT was 1.1 times greater than the other two placements, while soil organic matter was greater in CC-WT (30.7 Mg ha−1) than in all other treatment-placement combinations, except for CC-NWT, which did not differ. Similarly, water-stable-aggregate concentration was 2.3 and 1.6 times greater in the CC-NWT and CC-WT combinations, respectively, which did not differ, compared to under NCC. Results demonstrated that CC benefits extended beyond the bed to positively affect soil properties in adjacent WT and NWT furrows. Continued small-scale, long-term management studies using CC will extend insight into site-specific, soil-health improvements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Agrosystems, Geosciences & Environment
Agrosystems, Geosciences & Environment Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
80
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信