Chuanqi Xiao, Debarun Ghosh, E. Győri, Addisu Paulos, Oscar Zamora
{"title":"Θ6的平面图兰数","authors":"Chuanqi Xiao, Debarun Ghosh, E. Győri, Addisu Paulos, Oscar Zamora","doi":"10.1556/012.2024.04307","DOIUrl":null,"url":null,"abstract":"Let F be a nonempty family of graphs. A graph 𝐺 is called F -free if it contains no graph from F as a subgraph. For a positive integer 𝑛, the planar Turán number of F, denoted by exp (𝑛, F), is the maximum number of edges in an 𝑛-vertex F -free planar graph.Let Θ𝑘 be the family of Theta graphs on 𝑘 ≥ 4 vertices, that is, graphs obtained by joining a pair of non-consecutive of a 𝑘-cycle with an edge. Lan, Shi and Song determined an upper bound exp (𝑛, Θ6) ≤ 18𝑛/7−36𝑛/7, but for large 𝑛, they did not verify that the bound is sharp. In this paper, we improve their bound by proving exp (𝑛, Θ6) ≤ 18𝑛/−48𝑛/7 and then we demonstrate the existence of infinitely many positive integer 𝑛 and an 𝑛-vertex Θ6-free planar graph attaining the bound.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Planar Turán Number of the Θ6\",\"authors\":\"Chuanqi Xiao, Debarun Ghosh, E. Győri, Addisu Paulos, Oscar Zamora\",\"doi\":\"10.1556/012.2024.04307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let F be a nonempty family of graphs. A graph 𝐺 is called F -free if it contains no graph from F as a subgraph. For a positive integer 𝑛, the planar Turán number of F, denoted by exp (𝑛, F), is the maximum number of edges in an 𝑛-vertex F -free planar graph.Let Θ𝑘 be the family of Theta graphs on 𝑘 ≥ 4 vertices, that is, graphs obtained by joining a pair of non-consecutive of a 𝑘-cycle with an edge. Lan, Shi and Song determined an upper bound exp (𝑛, Θ6) ≤ 18𝑛/7−36𝑛/7, but for large 𝑛, they did not verify that the bound is sharp. In this paper, we improve their bound by proving exp (𝑛, Θ6) ≤ 18𝑛/−48𝑛/7 and then we demonstrate the existence of infinitely many positive integer 𝑛 and an 𝑛-vertex Θ6-free planar graph attaining the bound.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2024.04307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2024.04307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设 F 是一个非空的图族。如果一个图 𝐺 的子图中不包含 F 中的任何一个图,则该图称为无 F 图。对于正整数𝑛,F 的平面图兰数(用 exp (𝑛, F) 表示)是𝑛-顶点 F -free 平面图中的最大边数。让 Θ𝑘 是 ≥ 4 个顶点上的 Theta 图族,即由𝑘循环的一对非连续边连接而成的图。Lan、Shi 和 Song 确定了一个上界 exp (𝑛, Θ6) ≤ 18𝑛/7-36𝑛/7, 但对于大𝑛,他们没有验证该界是否尖锐。在本文中,我们通过证明 exp (𝑛, Θ6) ≤ 18𝑛/-48𝑛/7 来改进他们的界值,然后证明存在无限多个正整数 𝑛 和一个无 𝑛 顶点 Θ6 的平面图可以达到该界值。
Let F be a nonempty family of graphs. A graph 𝐺 is called F -free if it contains no graph from F as a subgraph. For a positive integer 𝑛, the planar Turán number of F, denoted by exp (𝑛, F), is the maximum number of edges in an 𝑛-vertex F -free planar graph.Let Θ𝑘 be the family of Theta graphs on 𝑘 ≥ 4 vertices, that is, graphs obtained by joining a pair of non-consecutive of a 𝑘-cycle with an edge. Lan, Shi and Song determined an upper bound exp (𝑛, Θ6) ≤ 18𝑛/7−36𝑛/7, but for large 𝑛, they did not verify that the bound is sharp. In this paper, we improve their bound by proving exp (𝑛, Θ6) ≤ 18𝑛/−48𝑛/7 and then we demonstrate the existence of infinitely many positive integer 𝑛 and an 𝑛-vertex Θ6-free planar graph attaining the bound.