Ayed. R. A. Alanzi, Ohud A. Alqasem, M. E. A. Elwahab, Raouf Fakhfakh
{"title":"关于自由泊松分布的一些结果","authors":"Ayed. R. A. Alanzi, Ohud A. Alqasem, M. E. A. Elwahab, Raouf Fakhfakh","doi":"10.3390/axioms13080496","DOIUrl":null,"url":null,"abstract":"Let K+(μi)={Qsiμi,si∈(m0μi,m+μi)}, i=1,2, be two CSK families generated by the nondegenerate probability measures μ1 and μ2 with support bounded from above. Define the set of measures L=K+(μ1)•K+(μ2)={Qs1μ1•Qs2μ2,s1∈(m0μ1,m+μ1)ands2∈(m0μ2,m+μ2)}, where Qs1μ1•Qs2μ2 denotes the Fermi convolution of Qs1μ1 and Qs2μ2. We prove that if L is still a CSK family (that is, L=K+(σ) for some nondegenerate probability measure ()σ), then the probability measures σ, μ1 and μ2 are of the free Poisson type and follow the free Poisson law up to affinity. The same result, regarding the free Poisson measure, is obtained if we consider the t-deformed free convolution t replacing the Fermi convolution • in the family of measures L.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"21 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Results on the Free Poisson Distribution\",\"authors\":\"Ayed. R. A. Alanzi, Ohud A. Alqasem, M. E. A. Elwahab, Raouf Fakhfakh\",\"doi\":\"10.3390/axioms13080496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let K+(μi)={Qsiμi,si∈(m0μi,m+μi)}, i=1,2, be two CSK families generated by the nondegenerate probability measures μ1 and μ2 with support bounded from above. Define the set of measures L=K+(μ1)•K+(μ2)={Qs1μ1•Qs2μ2,s1∈(m0μ1,m+μ1)ands2∈(m0μ2,m+μ2)}, where Qs1μ1•Qs2μ2 denotes the Fermi convolution of Qs1μ1 and Qs2μ2. We prove that if L is still a CSK family (that is, L=K+(σ) for some nondegenerate probability measure ()σ), then the probability measures σ, μ1 and μ2 are of the free Poisson type and follow the free Poisson law up to affinity. The same result, regarding the free Poisson measure, is obtained if we consider the t-deformed free convolution t replacing the Fermi convolution • in the family of measures L.\",\"PeriodicalId\":502355,\"journal\":{\"name\":\"Axioms\",\"volume\":\"21 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13080496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13080496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设 K+(μi)={Qsiμi,si∈(m0μi,m+μi)},i=1,2,是由非enerate 概率度量 μ1 和 μ2 生成的两个 CSK 族,它们的支持从上而下有界。定义度量集合 L=K+(μ1)-K+(μ2)={Qs1μ1-Qs2μ2,s1∈(m0μ1,m+μ1)ands2∈(m0μ2,m+μ2)} ,其中 Qs1μ1-Qs2μ2 表示 Qs1μ1 和 Qs2μ2 的费米卷积。我们证明,如果 L 仍然是 CSK 族(即 L=K+(σ) 对于某个非enerate 概率度量 ()σ),那么概率度量 σ、μ1 和 μ2 属于自由泊松类型,并遵循直到亲和性的自由泊松定律。如果我们在量纲 L 的族中考虑 t 变形自由卷积 t 代替费米卷积,也会得到关于自由泊松量纲的相同结果。
Let K+(μi)={Qsiμi,si∈(m0μi,m+μi)}, i=1,2, be two CSK families generated by the nondegenerate probability measures μ1 and μ2 with support bounded from above. Define the set of measures L=K+(μ1)•K+(μ2)={Qs1μ1•Qs2μ2,s1∈(m0μ1,m+μ1)ands2∈(m0μ2,m+μ2)}, where Qs1μ1•Qs2μ2 denotes the Fermi convolution of Qs1μ1 and Qs2μ2. We prove that if L is still a CSK family (that is, L=K+(σ) for some nondegenerate probability measure ()σ), then the probability measures σ, μ1 and μ2 are of the free Poisson type and follow the free Poisson law up to affinity. The same result, regarding the free Poisson measure, is obtained if we consider the t-deformed free convolution t replacing the Fermi convolution • in the family of measures L.