关于自由泊松分布的一些结果

Axioms Pub Date : 2024-07-24 DOI:10.3390/axioms13080496
Ayed. R. A. Alanzi, Ohud A. Alqasem, M. E. A. Elwahab, Raouf Fakhfakh
{"title":"关于自由泊松分布的一些结果","authors":"Ayed. R. A. Alanzi, Ohud A. Alqasem, M. E. A. Elwahab, Raouf Fakhfakh","doi":"10.3390/axioms13080496","DOIUrl":null,"url":null,"abstract":"Let K+(μi)={Qsiμi,si∈(m0μi,m+μi)}, i=1,2, be two CSK families generated by the nondegenerate probability measures μ1 and μ2 with support bounded from above. Define the set of measures L=K+(μ1)•K+(μ2)={Qs1μ1•Qs2μ2,s1∈(m0μ1,m+μ1)ands2∈(m0μ2,m+μ2)}, where Qs1μ1•Qs2μ2 denotes the Fermi convolution of Qs1μ1 and Qs2μ2. We prove that if L is still a CSK family (that is, L=K+(σ) for some nondegenerate probability measure ()σ), then the probability measures σ, μ1 and μ2 are of the free Poisson type and follow the free Poisson law up to affinity. The same result, regarding the free Poisson measure, is obtained if we consider the t-deformed free convolution t replacing the Fermi convolution • in the family of measures L.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"21 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Results on the Free Poisson Distribution\",\"authors\":\"Ayed. R. A. Alanzi, Ohud A. Alqasem, M. E. A. Elwahab, Raouf Fakhfakh\",\"doi\":\"10.3390/axioms13080496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let K+(μi)={Qsiμi,si∈(m0μi,m+μi)}, i=1,2, be two CSK families generated by the nondegenerate probability measures μ1 and μ2 with support bounded from above. Define the set of measures L=K+(μ1)•K+(μ2)={Qs1μ1•Qs2μ2,s1∈(m0μ1,m+μ1)ands2∈(m0μ2,m+μ2)}, where Qs1μ1•Qs2μ2 denotes the Fermi convolution of Qs1μ1 and Qs2μ2. We prove that if L is still a CSK family (that is, L=K+(σ) for some nondegenerate probability measure ()σ), then the probability measures σ, μ1 and μ2 are of the free Poisson type and follow the free Poisson law up to affinity. The same result, regarding the free Poisson measure, is obtained if we consider the t-deformed free convolution t replacing the Fermi convolution • in the family of measures L.\",\"PeriodicalId\":502355,\"journal\":{\"name\":\"Axioms\",\"volume\":\"21 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13080496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13080496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 K+(μi)={Qsiμi,si∈(m0μi,m+μi)},i=1,2,是由非enerate 概率度量 μ1 和 μ2 生成的两个 CSK 族,它们的支持从上而下有界。定义度量集合 L=K+(μ1)-K+(μ2)={Qs1μ1-Qs2μ2,s1∈(m0μ1,m+μ1)ands2∈(m0μ2,m+μ2)} ,其中 Qs1μ1-Qs2μ2 表示 Qs1μ1 和 Qs2μ2 的费米卷积。我们证明,如果 L 仍然是 CSK 族(即 L=K+(σ) 对于某个非enerate 概率度量 ()σ),那么概率度量 σ、μ1 和 μ2 属于自由泊松类型,并遵循直到亲和性的自由泊松定律。如果我们在量纲 L 的族中考虑 t 变形自由卷积 t 代替费米卷积,也会得到关于自由泊松量纲的相同结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Results on the Free Poisson Distribution
Let K+(μi)={Qsiμi,si∈(m0μi,m+μi)}, i=1,2, be two CSK families generated by the nondegenerate probability measures μ1 and μ2 with support bounded from above. Define the set of measures L=K+(μ1)•K+(μ2)={Qs1μ1•Qs2μ2,s1∈(m0μ1,m+μ1)ands2∈(m0μ2,m+μ2)}, where Qs1μ1•Qs2μ2 denotes the Fermi convolution of Qs1μ1 and Qs2μ2. We prove that if L is still a CSK family (that is, L=K+(σ) for some nondegenerate probability measure ()σ), then the probability measures σ, μ1 and μ2 are of the free Poisson type and follow the free Poisson law up to affinity. The same result, regarding the free Poisson measure, is obtained if we consider the t-deformed free convolution t replacing the Fermi convolution • in the family of measures L.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信