Juvissan Aguedo, M. Vojs, Martin Vrška, Marek Nemcovic, Z. Pakanová, K. Dragounová, Oleksandr Romanyuk, Alexander Kromka, Marian Varga, Michal Hatala, M. Marton, J. Tkáč
{"title":"在掺硼金刚石表面使用质谱法检测多肽的关键因素是什么?","authors":"Juvissan Aguedo, M. Vojs, Martin Vrška, Marek Nemcovic, Z. Pakanová, K. Dragounová, Oleksandr Romanyuk, Alexander Kromka, Marian Varga, Michal Hatala, M. Marton, J. Tkáč","doi":"10.3390/nano14151241","DOIUrl":null,"url":null,"abstract":"We investigated the use of boron-doped diamond (BDD) with different surface morphologies for the enhanced detection of nine different peptides by matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS). For the first time, we compared three different nanostructured BDD film morphologies (Continuous, Nanograss, and Nanotips) with differently terminated surfaces (-H, -O, and -F) to commercially available Ground Steel plates. All these surfaces were evaluated for their effectiveness in detecting the nine different peptides by MALDI-MS. Our results demonstrated that certain nanostructured BDD surfaces exhibited superior performance for the detection of especially hydrophobic peptides (e.g., bradykinin 1–7, substance P, and the renin substrate), with a limit of detection of down to 2.3 pM. Further investigation showed that hydrophobic peptides (e.g., bradykinin 1–7, substance P, and the renin substrate) were effectively detected on hydrogen-terminated BDD surfaces. On the other hand, the highly acidic negatively charged peptide adrenocorticotropic hormone fragment 18–39 was effectively identified on oxygen-/fluorine-terminated BDD surfaces. Furthermore, BDD surfaces reduced sodium adduct contamination significantly.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"19 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What Are the Key Factors for the Detection of Peptides Using Mass Spectrometry on Boron-Doped Diamond Surfaces?\",\"authors\":\"Juvissan Aguedo, M. Vojs, Martin Vrška, Marek Nemcovic, Z. Pakanová, K. Dragounová, Oleksandr Romanyuk, Alexander Kromka, Marian Varga, Michal Hatala, M. Marton, J. Tkáč\",\"doi\":\"10.3390/nano14151241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigated the use of boron-doped diamond (BDD) with different surface morphologies for the enhanced detection of nine different peptides by matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS). For the first time, we compared three different nanostructured BDD film morphologies (Continuous, Nanograss, and Nanotips) with differently terminated surfaces (-H, -O, and -F) to commercially available Ground Steel plates. All these surfaces were evaluated for their effectiveness in detecting the nine different peptides by MALDI-MS. Our results demonstrated that certain nanostructured BDD surfaces exhibited superior performance for the detection of especially hydrophobic peptides (e.g., bradykinin 1–7, substance P, and the renin substrate), with a limit of detection of down to 2.3 pM. Further investigation showed that hydrophobic peptides (e.g., bradykinin 1–7, substance P, and the renin substrate) were effectively detected on hydrogen-terminated BDD surfaces. On the other hand, the highly acidic negatively charged peptide adrenocorticotropic hormone fragment 18–39 was effectively identified on oxygen-/fluorine-terminated BDD surfaces. Furthermore, BDD surfaces reduced sodium adduct contamination significantly.\",\"PeriodicalId\":508599,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"19 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14151241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nano14151241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
What Are the Key Factors for the Detection of Peptides Using Mass Spectrometry on Boron-Doped Diamond Surfaces?
We investigated the use of boron-doped diamond (BDD) with different surface morphologies for the enhanced detection of nine different peptides by matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS). For the first time, we compared three different nanostructured BDD film morphologies (Continuous, Nanograss, and Nanotips) with differently terminated surfaces (-H, -O, and -F) to commercially available Ground Steel plates. All these surfaces were evaluated for their effectiveness in detecting the nine different peptides by MALDI-MS. Our results demonstrated that certain nanostructured BDD surfaces exhibited superior performance for the detection of especially hydrophobic peptides (e.g., bradykinin 1–7, substance P, and the renin substrate), with a limit of detection of down to 2.3 pM. Further investigation showed that hydrophobic peptides (e.g., bradykinin 1–7, substance P, and the renin substrate) were effectively detected on hydrogen-terminated BDD surfaces. On the other hand, the highly acidic negatively charged peptide adrenocorticotropic hormone fragment 18–39 was effectively identified on oxygen-/fluorine-terminated BDD surfaces. Furthermore, BDD surfaces reduced sodium adduct contamination significantly.