人工智能驱动的全基因组测序是否应常规用于肿瘤外科个性化决策支持--范围界定综述

Kokiladevi Alagarswamy, Wenjie Shi, Aishwarya Boini, Nouredin Messaoudi, Vincent Grasso, Thomas Cattabiani, Bruce Turner, Roland S Croner, U. D. Kahlert, Andrew Gumbs
{"title":"人工智能驱动的全基因组测序是否应常规用于肿瘤外科个性化决策支持--范围界定综述","authors":"Kokiladevi Alagarswamy, Wenjie Shi, Aishwarya Boini, Nouredin Messaoudi, Vincent Grasso, Thomas Cattabiani, Bruce Turner, Roland S Croner, U. D. Kahlert, Andrew Gumbs","doi":"10.3390/biomedinformatics4030096","DOIUrl":null,"url":null,"abstract":"In this scoping review, we delve into the transformative potential of artificial intelligence (AI) in addressing challenges inherent in whole-genome sequencing (WGS) analysis, with a specific focus on its implications in oncology. Unveiling the limitations of existing sequencing technologies, the review illuminates how AI-powered methods emerge as innovative solutions to surmount these obstacles. The evolution of DNA sequencing technologies, progressing from Sanger sequencing to next-generation sequencing, sets the backdrop for AI’s emergence as a potent ally in processing and analyzing the voluminous genomic data generated. Particularly, deep learning methods play a pivotal role in extracting knowledge and discerning patterns from the vast landscape of genomic information. In the context of oncology, AI-powered methods exhibit considerable potential across diverse facets of WGS analysis, including variant calling, structural variation identification, and pharmacogenomic analysis. This review underscores the significance of multimodal approaches in diagnoses and therapies, highlighting the importance of ongoing research and development in AI-powered WGS techniques. Integrating AI into the analytical framework empowers scientists and clinicians to unravel the intricate interplay of genomics within the realm of multi-omics research, paving the way for more successful personalized and targeted treatments.","PeriodicalId":72394,"journal":{"name":"BioMedInformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Should AI-Powered Whole-Genome Sequencing Be Used Routinely for Personalized Decision Support in Surgical Oncology—A Scoping Review\",\"authors\":\"Kokiladevi Alagarswamy, Wenjie Shi, Aishwarya Boini, Nouredin Messaoudi, Vincent Grasso, Thomas Cattabiani, Bruce Turner, Roland S Croner, U. D. Kahlert, Andrew Gumbs\",\"doi\":\"10.3390/biomedinformatics4030096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this scoping review, we delve into the transformative potential of artificial intelligence (AI) in addressing challenges inherent in whole-genome sequencing (WGS) analysis, with a specific focus on its implications in oncology. Unveiling the limitations of existing sequencing technologies, the review illuminates how AI-powered methods emerge as innovative solutions to surmount these obstacles. The evolution of DNA sequencing technologies, progressing from Sanger sequencing to next-generation sequencing, sets the backdrop for AI’s emergence as a potent ally in processing and analyzing the voluminous genomic data generated. Particularly, deep learning methods play a pivotal role in extracting knowledge and discerning patterns from the vast landscape of genomic information. In the context of oncology, AI-powered methods exhibit considerable potential across diverse facets of WGS analysis, including variant calling, structural variation identification, and pharmacogenomic analysis. This review underscores the significance of multimodal approaches in diagnoses and therapies, highlighting the importance of ongoing research and development in AI-powered WGS techniques. Integrating AI into the analytical framework empowers scientists and clinicians to unravel the intricate interplay of genomics within the realm of multi-omics research, paving the way for more successful personalized and targeted treatments.\",\"PeriodicalId\":72394,\"journal\":{\"name\":\"BioMedInformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioMedInformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biomedinformatics4030096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedInformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biomedinformatics4030096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇范围综述中,我们深入探讨了人工智能(AI)在应对全基因组测序(WGS)分析中固有挑战方面的变革潜力,并特别关注其在肿瘤学中的影响。综述揭示了现有测序技术的局限性,并阐明了人工智能驱动的方法如何成为克服这些障碍的创新解决方案。从桑格测序到新一代测序,DNA 测序技术的发展为人工智能成为处理和分析大量基因组数据的有力盟友奠定了基础。特别是,深度学习方法在从庞大的基因组信息中提取知识和辨别模式方面发挥着举足轻重的作用。在肿瘤学领域,人工智能驱动的方法在 WGS 分析的不同方面都表现出了相当大的潜力,包括变异调用、结构变异鉴定和药物基因组分析。这篇综述强调了多模式方法在诊断和治疗中的重要性,突出了正在进行的人工智能驱动的 WGS 技术研发的重要性。将人工智能整合到分析框架中,科学家和临床医生就能在多组学研究领域中解开基因组学错综复杂的相互作用,为更成功的个性化和靶向治疗铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Should AI-Powered Whole-Genome Sequencing Be Used Routinely for Personalized Decision Support in Surgical Oncology—A Scoping Review
In this scoping review, we delve into the transformative potential of artificial intelligence (AI) in addressing challenges inherent in whole-genome sequencing (WGS) analysis, with a specific focus on its implications in oncology. Unveiling the limitations of existing sequencing technologies, the review illuminates how AI-powered methods emerge as innovative solutions to surmount these obstacles. The evolution of DNA sequencing technologies, progressing from Sanger sequencing to next-generation sequencing, sets the backdrop for AI’s emergence as a potent ally in processing and analyzing the voluminous genomic data generated. Particularly, deep learning methods play a pivotal role in extracting knowledge and discerning patterns from the vast landscape of genomic information. In the context of oncology, AI-powered methods exhibit considerable potential across diverse facets of WGS analysis, including variant calling, structural variation identification, and pharmacogenomic analysis. This review underscores the significance of multimodal approaches in diagnoses and therapies, highlighting the importance of ongoing research and development in AI-powered WGS techniques. Integrating AI into the analytical framework empowers scientists and clinicians to unravel the intricate interplay of genomics within the realm of multi-omics research, paving the way for more successful personalized and targeted treatments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信