Hwanjo Chung, Seunghwan Wi, Byoung-Kwan Cho, Hoonsoo Lee
{"title":"利用地基高光谱成像系统通过肥料差异对大蒜(Allium sativum L.)作物进行分类","authors":"Hwanjo Chung, Seunghwan Wi, Byoung-Kwan Cho, Hoonsoo Lee","doi":"10.3390/agriculture14081215","DOIUrl":null,"url":null,"abstract":"In contemporary agriculture, enhancing the efficient production of crops and optimizing resource utilization have become paramount objectives. Garlic growth and quality are influenced by various factors, with fertilizers playing a pivotal role in shaping both aspects. This study aimed to develop classification models for distinguishing garlic fertilizer application differences by employing statistical and machine learning techniques, such as partial least squares (PLS), based on data acquired from a ground-based hyperspectral imaging system in the agricultural sector. The garlic variety chosen for this study was Hongsan, and the fertilizer application plots were segmented into three distinct sections. Data were acquired within the VIS/NIR wavelength range using hyperspectral imaging. Following data acquisition, the standard normal variate (SNV) pre-processing technique was applied to enhance the dataset. To identify the optimal wavelengths, various techniques such as sequential forward selection (SFS), successive projections algorithm (SPA), variable importance in projection (VIP), and interval partial least squares (iPLS) were employed, resulting in the selection of 12 optimal wavelengths. For the fertilizer application difference model, six integrated vegetation indices were chosen for comparison with existing growth indicators. Using the same methodology, the model construction showed accuracies of 90.7% for PLS. Thus, the proposed model suggests that efficient regulation of garlic fertilizer application can be achieved by utilizing statistical and machine learning techniques.","PeriodicalId":7447,"journal":{"name":"Agriculture","volume":"44 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Garlic (Allium sativum L.) Crops by Fertilizer Differences Using Ground-Based Hyperspectral Imaging System\",\"authors\":\"Hwanjo Chung, Seunghwan Wi, Byoung-Kwan Cho, Hoonsoo Lee\",\"doi\":\"10.3390/agriculture14081215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In contemporary agriculture, enhancing the efficient production of crops and optimizing resource utilization have become paramount objectives. Garlic growth and quality are influenced by various factors, with fertilizers playing a pivotal role in shaping both aspects. This study aimed to develop classification models for distinguishing garlic fertilizer application differences by employing statistical and machine learning techniques, such as partial least squares (PLS), based on data acquired from a ground-based hyperspectral imaging system in the agricultural sector. The garlic variety chosen for this study was Hongsan, and the fertilizer application plots were segmented into three distinct sections. Data were acquired within the VIS/NIR wavelength range using hyperspectral imaging. Following data acquisition, the standard normal variate (SNV) pre-processing technique was applied to enhance the dataset. To identify the optimal wavelengths, various techniques such as sequential forward selection (SFS), successive projections algorithm (SPA), variable importance in projection (VIP), and interval partial least squares (iPLS) were employed, resulting in the selection of 12 optimal wavelengths. For the fertilizer application difference model, six integrated vegetation indices were chosen for comparison with existing growth indicators. Using the same methodology, the model construction showed accuracies of 90.7% for PLS. Thus, the proposed model suggests that efficient regulation of garlic fertilizer application can be achieved by utilizing statistical and machine learning techniques.\",\"PeriodicalId\":7447,\"journal\":{\"name\":\"Agriculture\",\"volume\":\"44 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agriculture14081215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriculture14081215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Classification of Garlic (Allium sativum L.) Crops by Fertilizer Differences Using Ground-Based Hyperspectral Imaging System
In contemporary agriculture, enhancing the efficient production of crops and optimizing resource utilization have become paramount objectives. Garlic growth and quality are influenced by various factors, with fertilizers playing a pivotal role in shaping both aspects. This study aimed to develop classification models for distinguishing garlic fertilizer application differences by employing statistical and machine learning techniques, such as partial least squares (PLS), based on data acquired from a ground-based hyperspectral imaging system in the agricultural sector. The garlic variety chosen for this study was Hongsan, and the fertilizer application plots were segmented into three distinct sections. Data were acquired within the VIS/NIR wavelength range using hyperspectral imaging. Following data acquisition, the standard normal variate (SNV) pre-processing technique was applied to enhance the dataset. To identify the optimal wavelengths, various techniques such as sequential forward selection (SFS), successive projections algorithm (SPA), variable importance in projection (VIP), and interval partial least squares (iPLS) were employed, resulting in the selection of 12 optimal wavelengths. For the fertilizer application difference model, six integrated vegetation indices were chosen for comparison with existing growth indicators. Using the same methodology, the model construction showed accuracies of 90.7% for PLS. Thus, the proposed model suggests that efficient regulation of garlic fertilizer application can be achieved by utilizing statistical and machine learning techniques.
AgricultureAgricultural and Biological Sciences-Horticulture
CiteScore
1.90
自引率
0.00%
发文量
4
审稿时长
11 weeks
期刊介绍:
The Agriculture (Poľnohospodárstvo) is a peer-reviewed international journal that publishes mainly original research papers. The journal examines various aspects of research and is devoted to the publication of papers dealing with the following subjects: plant nutrition, protection, breeding, genetics and biotechnology, quality of plant products, grassland, mountain agriculture and environment, soil science and conservation, mechanization and economics of plant production and other spheres of plant science. Journal is published 4 times per year.