利用递归 LSTM 神经网络检测车辆总线中的交通异常情况

{"title":"利用递归 LSTM 神经网络检测车辆总线中的交通异常情况","authors":"","doi":"10.18469/ikt.2023.21.4.02","DOIUrl":null,"url":null,"abstract":"Modern high-end cars have many electronic control units for driving assistance that combine huge amounts of data about the functioning of car components. A significant part of these vehicles use a controller area network for communication between electronic units. Controller area network is a simple and reliable network protocol that due to its simplicity lacks any security mechanisms for data transmission. The problem of controller area network vulnerability is worsening as constantly growing amounts of data between cars, road infrastructure and the Internet. The traffic of attacks on controller area networks can be treated as abnormal that allows using anomaly detection methods for their recognition. In this work we propose the recurrent long short-term memory encoder-decoder neural network for controller area network attacks detection.","PeriodicalId":508406,"journal":{"name":"Infokommunikacionnye tehnologii","volume":"68 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TRAFFIC ANOMALY DETECTION IN VEHICLE BUS BY RECURRENT LSTM NEURAL NETWORK\",\"authors\":\"\",\"doi\":\"10.18469/ikt.2023.21.4.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern high-end cars have many electronic control units for driving assistance that combine huge amounts of data about the functioning of car components. A significant part of these vehicles use a controller area network for communication between electronic units. Controller area network is a simple and reliable network protocol that due to its simplicity lacks any security mechanisms for data transmission. The problem of controller area network vulnerability is worsening as constantly growing amounts of data between cars, road infrastructure and the Internet. The traffic of attacks on controller area networks can be treated as abnormal that allows using anomaly detection methods for their recognition. In this work we propose the recurrent long short-term memory encoder-decoder neural network for controller area network attacks detection.\",\"PeriodicalId\":508406,\"journal\":{\"name\":\"Infokommunikacionnye tehnologii\",\"volume\":\"68 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infokommunikacionnye tehnologii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18469/ikt.2023.21.4.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infokommunikacionnye tehnologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18469/ikt.2023.21.4.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代高端汽车拥有许多用于辅助驾驶的电子控制单元,这些单元汇集了有关汽车部件运行的大量数据。这些汽车中有很大一部分使用控制器区域网络进行电子单元之间的通信。控制器区域网络是一种简单可靠的网络协议,但由于其简单性,在数据传输方面缺乏任何安全机制。随着汽车、道路基础设施和互联网之间的数据量不断增加,控制器区域网络的脆弱性问题日益严重。对控制器区域网络的攻击流量可被视为异常流量,因此可使用异常检测方法对其进行识别。在这项工作中,我们提出了用于控制器区域网络攻击检测的递归长短期记忆编码器-解码器神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TRAFFIC ANOMALY DETECTION IN VEHICLE BUS BY RECURRENT LSTM NEURAL NETWORK
Modern high-end cars have many electronic control units for driving assistance that combine huge amounts of data about the functioning of car components. A significant part of these vehicles use a controller area network for communication between electronic units. Controller area network is a simple and reliable network protocol that due to its simplicity lacks any security mechanisms for data transmission. The problem of controller area network vulnerability is worsening as constantly growing amounts of data between cars, road infrastructure and the Internet. The traffic of attacks on controller area networks can be treated as abnormal that allows using anomaly detection methods for their recognition. In this work we propose the recurrent long short-term memory encoder-decoder neural network for controller area network attacks detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信