迈向可持续区块链:基于点对点联盟学习的方法

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Vidushi Agarwal, Shruti Mishra, Sujata Pal
{"title":"迈向可持续区块链:基于点对点联盟学习的方法","authors":"Vidushi Agarwal, Shruti Mishra, Sujata Pal","doi":"10.1145/3680544","DOIUrl":null,"url":null,"abstract":"In the rapidly evolving digital world, blockchain technology is becoming the foundation for numerous applications, ranging from financial services to supply chain management. As the usage of blockchain is becoming more prevalent, the energy-intensive nature of this technology has raised concerns about its long-term sustainability and environmental footprint. To address this challenge, we explore the potential of Peer-to-Peer Federated Learning (P2P-FL), a distributed machine learning approach that allows multiple nodes to collaborate without sharing raw data. We present a novel integration of P2P-FL with blockchain technology, aimed at enhancing the sustainability and efficiency of blockchain networks. The basic idea of our approach is the use of distributed learning mechanisms to find the optimal performance parameters of blockchain without relying on centralized control. These parameters are then used by a load-balancing mechanism that prioritizes energy efficiency to distribute loads on different blockchains. Furthermore, we formulate a non-cooperative game theory model to align the individual node strategies with the collective objective of energy optimization, ensuring a balance between self-interest and overall network performance. Our work is exemplified through a case study in the renewable energy sector, demonstrating the application of our model in creating an efficient marketplace for energy trading. The experimentation and results indicate a significant improvement in the execution times and energy consumption of blockchain networks. Therefore, the overall sustainability of the network is enhanced, making our framework practical and applicable in real-world scenarios.","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a Sustainable Blockchain: A Peer-to-Peer Federated Learning based Approach\",\"authors\":\"Vidushi Agarwal, Shruti Mishra, Sujata Pal\",\"doi\":\"10.1145/3680544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the rapidly evolving digital world, blockchain technology is becoming the foundation for numerous applications, ranging from financial services to supply chain management. As the usage of blockchain is becoming more prevalent, the energy-intensive nature of this technology has raised concerns about its long-term sustainability and environmental footprint. To address this challenge, we explore the potential of Peer-to-Peer Federated Learning (P2P-FL), a distributed machine learning approach that allows multiple nodes to collaborate without sharing raw data. We present a novel integration of P2P-FL with blockchain technology, aimed at enhancing the sustainability and efficiency of blockchain networks. The basic idea of our approach is the use of distributed learning mechanisms to find the optimal performance parameters of blockchain without relying on centralized control. These parameters are then used by a load-balancing mechanism that prioritizes energy efficiency to distribute loads on different blockchains. Furthermore, we formulate a non-cooperative game theory model to align the individual node strategies with the collective objective of energy optimization, ensuring a balance between self-interest and overall network performance. Our work is exemplified through a case study in the renewable energy sector, demonstrating the application of our model in creating an efficient marketplace for energy trading. The experimentation and results indicate a significant improvement in the execution times and energy consumption of blockchain networks. Therefore, the overall sustainability of the network is enhanced, making our framework practical and applicable in real-world scenarios.\",\"PeriodicalId\":50911,\"journal\":{\"name\":\"ACM Transactions on Internet Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3680544\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3680544","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在快速发展的数字世界中,区块链技术正成为从金融服务到供应链管理等众多应用的基础。随着区块链的使用越来越普遍,这种技术的能源密集型特性引起了人们对其长期可持续性和环境影响的担忧。为了应对这一挑战,我们探索了点对点联合学习(P2P-FL)的潜力,这是一种分布式机器学习方法,允许多个节点在不共享原始数据的情况下进行协作。我们提出了一种将 P2P-FL 与区块链技术相结合的新方法,旨在提高区块链网络的可持续性和效率。我们的方法的基本思想是利用分布式学习机制,在不依赖集中控制的情况下找到区块链的最佳性能参数。然后,这些参数会被优先考虑能源效率的负载平衡机制使用,以在不同的区块链上分配负载。此外,我们还制定了一个非合作博弈论模型,使单个节点的策略与能源优化的集体目标保持一致,确保自身利益与整体网络性能之间的平衡。我们的工作通过可再生能源领域的案例研究进行了示范,展示了我们的模型在创建高效能源交易市场中的应用。实验和结果表明,区块链网络的执行时间和能耗有了显著改善。因此,网络的整体可持续性得到了增强,使我们的框架在现实世界的应用场景中切实可行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a Sustainable Blockchain: A Peer-to-Peer Federated Learning based Approach
In the rapidly evolving digital world, blockchain technology is becoming the foundation for numerous applications, ranging from financial services to supply chain management. As the usage of blockchain is becoming more prevalent, the energy-intensive nature of this technology has raised concerns about its long-term sustainability and environmental footprint. To address this challenge, we explore the potential of Peer-to-Peer Federated Learning (P2P-FL), a distributed machine learning approach that allows multiple nodes to collaborate without sharing raw data. We present a novel integration of P2P-FL with blockchain technology, aimed at enhancing the sustainability and efficiency of blockchain networks. The basic idea of our approach is the use of distributed learning mechanisms to find the optimal performance parameters of blockchain without relying on centralized control. These parameters are then used by a load-balancing mechanism that prioritizes energy efficiency to distribute loads on different blockchains. Furthermore, we formulate a non-cooperative game theory model to align the individual node strategies with the collective objective of energy optimization, ensuring a balance between self-interest and overall network performance. Our work is exemplified through a case study in the renewable energy sector, demonstrating the application of our model in creating an efficient marketplace for energy trading. The experimentation and results indicate a significant improvement in the execution times and energy consumption of blockchain networks. Therefore, the overall sustainability of the network is enhanced, making our framework practical and applicable in real-world scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Internet Technology
ACM Transactions on Internet Technology 工程技术-计算机:软件工程
CiteScore
10.30
自引率
1.90%
发文量
137
审稿时长
>12 weeks
期刊介绍: ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines including computer software engineering, computer programming languages, middleware, database management, security, knowledge discovery and data mining, networking and distributed systems, communications, performance and scalability etc. TOIT will cover the results and roles of the individual disciplines and the relationshipsamong them.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信