{"title":"基于混沌冠豪猪优化器的智能农场无线传感器定位混合 DV-Hop 算法的研究与设计","authors":"Hao Wang, Lixin Zhang, Bao Liu","doi":"10.3390/agriculture14081226","DOIUrl":null,"url":null,"abstract":"The efficient operation of smart farms relies on the precise monitoring of farm environmental information, necessitating the deployment of a large number of wireless sensors. These sensors must be integrated with their specific locations within the fields to ensure data accuracy. Therefore, efficiently and rapidly determining the positions of sensor nodes presents a significant challenge. To address this issue, this paper proposes a hybrid optimization DV-Hop localization algorithm based on the chaotic crested porcupine optimizer. The algorithm leverages the received signal strength indicator, combined with node hierarchical values, to achieve graded processing of the minimum number of hops. Polynomial fitting methods are employed to reduce the estimation distance error from the beacon nodes to unknown nodes. Finally, the chaotic optimization crested porcupine optimizer is designed for intelligent optimization. Simulation experiments verify the proposed algorithm’s localization performance across different monitoring areas, varying beacon node ratios, and assorted communication radii. The simulation results demonstrate that the proposed algorithm effectively enhances node localization accuracy and significantly reduces localization errors compared to the results for other algorithms. In future work, we plan to consider the impact of algorithm complexity on the lifespan of wireless sensor networks and to further evaluate the algorithm in a pH monitoring system for farmland.","PeriodicalId":7447,"journal":{"name":"Agriculture","volume":"59 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research and Design of a Hybrid DV-Hop Algorithm Based on the Chaotic Crested Porcupine Optimizer for Wireless Sensor Localization in Smart Farms\",\"authors\":\"Hao Wang, Lixin Zhang, Bao Liu\",\"doi\":\"10.3390/agriculture14081226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficient operation of smart farms relies on the precise monitoring of farm environmental information, necessitating the deployment of a large number of wireless sensors. These sensors must be integrated with their specific locations within the fields to ensure data accuracy. Therefore, efficiently and rapidly determining the positions of sensor nodes presents a significant challenge. To address this issue, this paper proposes a hybrid optimization DV-Hop localization algorithm based on the chaotic crested porcupine optimizer. The algorithm leverages the received signal strength indicator, combined with node hierarchical values, to achieve graded processing of the minimum number of hops. Polynomial fitting methods are employed to reduce the estimation distance error from the beacon nodes to unknown nodes. Finally, the chaotic optimization crested porcupine optimizer is designed for intelligent optimization. Simulation experiments verify the proposed algorithm’s localization performance across different monitoring areas, varying beacon node ratios, and assorted communication radii. The simulation results demonstrate that the proposed algorithm effectively enhances node localization accuracy and significantly reduces localization errors compared to the results for other algorithms. In future work, we plan to consider the impact of algorithm complexity on the lifespan of wireless sensor networks and to further evaluate the algorithm in a pH monitoring system for farmland.\",\"PeriodicalId\":7447,\"journal\":{\"name\":\"Agriculture\",\"volume\":\"59 24\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agriculture14081226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriculture14081226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Research and Design of a Hybrid DV-Hop Algorithm Based on the Chaotic Crested Porcupine Optimizer for Wireless Sensor Localization in Smart Farms
The efficient operation of smart farms relies on the precise monitoring of farm environmental information, necessitating the deployment of a large number of wireless sensors. These sensors must be integrated with their specific locations within the fields to ensure data accuracy. Therefore, efficiently and rapidly determining the positions of sensor nodes presents a significant challenge. To address this issue, this paper proposes a hybrid optimization DV-Hop localization algorithm based on the chaotic crested porcupine optimizer. The algorithm leverages the received signal strength indicator, combined with node hierarchical values, to achieve graded processing of the minimum number of hops. Polynomial fitting methods are employed to reduce the estimation distance error from the beacon nodes to unknown nodes. Finally, the chaotic optimization crested porcupine optimizer is designed for intelligent optimization. Simulation experiments verify the proposed algorithm’s localization performance across different monitoring areas, varying beacon node ratios, and assorted communication radii. The simulation results demonstrate that the proposed algorithm effectively enhances node localization accuracy and significantly reduces localization errors compared to the results for other algorithms. In future work, we plan to consider the impact of algorithm complexity on the lifespan of wireless sensor networks and to further evaluate the algorithm in a pH monitoring system for farmland.
AgricultureAgricultural and Biological Sciences-Horticulture
CiteScore
1.90
自引率
0.00%
发文量
4
审稿时长
11 weeks
期刊介绍:
The Agriculture (Poľnohospodárstvo) is a peer-reviewed international journal that publishes mainly original research papers. The journal examines various aspects of research and is devoted to the publication of papers dealing with the following subjects: plant nutrition, protection, breeding, genetics and biotechnology, quality of plant products, grassland, mountain agriculture and environment, soil science and conservation, mechanization and economics of plant production and other spheres of plant science. Journal is published 4 times per year.