基于混沌博弈优化算法的路径规划生成器

Jialong Li
{"title":"基于混沌博弈优化算法的路径规划生成器","authors":"Jialong Li","doi":"10.54254/2755-2721/55/20241526","DOIUrl":null,"url":null,"abstract":"This research paper explores a novel path planning generator that leverages the Chaos Game Optimization (CGO) algorithm, a mathematical technique inspired by the chaos game that creates fractals. The CGO algorithm is applied to analyze fractal configurations and self-similarity problems in path planning. The paper provides detailed information about the initialization of candidate solutions and the iterative process of updating their positions and fitness values. Through MATLAB simulations, the paper demonstrates the CGO algorithm's effectiveness in generating optimal paths in complex scenarios with randomly generated blocks or labyrinth environments. The approach shows great potential in enhancing the capabilities of autonomous robots in navigating dynamic and challenging environments. This paper also simulated the path planning generator using the CGO algorithm in MATLAB. By implementing chaos theory and randomness, the CGO algorithm provides a robust and efficient solution for path planning, enabling robotic systems to handle complex and nonlinear problems. The paper concludes that the application of chaos theory in robotics opens up exciting possibilities for advancing the capabilities of robotic systems and enhancing their performance in real-world scenarios.","PeriodicalId":502253,"journal":{"name":"Applied and Computational Engineering","volume":"53 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A path planning generator based on the Chaos Game Optimization algorithm\",\"authors\":\"Jialong Li\",\"doi\":\"10.54254/2755-2721/55/20241526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper explores a novel path planning generator that leverages the Chaos Game Optimization (CGO) algorithm, a mathematical technique inspired by the chaos game that creates fractals. The CGO algorithm is applied to analyze fractal configurations and self-similarity problems in path planning. The paper provides detailed information about the initialization of candidate solutions and the iterative process of updating their positions and fitness values. Through MATLAB simulations, the paper demonstrates the CGO algorithm's effectiveness in generating optimal paths in complex scenarios with randomly generated blocks or labyrinth environments. The approach shows great potential in enhancing the capabilities of autonomous robots in navigating dynamic and challenging environments. This paper also simulated the path planning generator using the CGO algorithm in MATLAB. By implementing chaos theory and randomness, the CGO algorithm provides a robust and efficient solution for path planning, enabling robotic systems to handle complex and nonlinear problems. The paper concludes that the application of chaos theory in robotics opens up exciting possibilities for advancing the capabilities of robotic systems and enhancing their performance in real-world scenarios.\",\"PeriodicalId\":502253,\"journal\":{\"name\":\"Applied and Computational Engineering\",\"volume\":\"53 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54254/2755-2721/55/20241526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2755-2721/55/20241526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究论文探讨了一种新型路径规划生成器,该生成器利用了混沌博弈优化(CGO)算法,这是一种受混沌博弈启发而产生的数学技术,可产生分形。CGO 算法用于分析路径规划中的分形配置和自相似性问题。论文详细介绍了候选解的初始化及其位置和适应度值的迭代更新过程。通过 MATLAB 仿真,论文证明了 CGO 算法在随机生成块或迷宫环境的复杂场景中生成最优路径的有效性。该方法在增强自主机器人在动态和挑战性环境中的导航能力方面显示出巨大的潜力。本文还在 MATLAB 中模拟了使用 CGO 算法的路径规划生成器。通过应用混沌理论和随机性,CGO 算法为路径规划提供了一种稳健高效的解决方案,使机器人系统能够处理复杂的非线性问题。本文的结论是,混沌理论在机器人学中的应用为提高机器人系统的能力和增强其在真实世界场景中的性能开辟了令人兴奋的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A path planning generator based on the Chaos Game Optimization algorithm
This research paper explores a novel path planning generator that leverages the Chaos Game Optimization (CGO) algorithm, a mathematical technique inspired by the chaos game that creates fractals. The CGO algorithm is applied to analyze fractal configurations and self-similarity problems in path planning. The paper provides detailed information about the initialization of candidate solutions and the iterative process of updating their positions and fitness values. Through MATLAB simulations, the paper demonstrates the CGO algorithm's effectiveness in generating optimal paths in complex scenarios with randomly generated blocks or labyrinth environments. The approach shows great potential in enhancing the capabilities of autonomous robots in navigating dynamic and challenging environments. This paper also simulated the path planning generator using the CGO algorithm in MATLAB. By implementing chaos theory and randomness, the CGO algorithm provides a robust and efficient solution for path planning, enabling robotic systems to handle complex and nonlinear problems. The paper concludes that the application of chaos theory in robotics opens up exciting possibilities for advancing the capabilities of robotic systems and enhancing their performance in real-world scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信