Xiaoli Zhao, Yuanhao Hu, Jiahui Liu, Jianyong Yao, W. Deng, Jian Hu, Zhuanzhe Zhao, Xiaoan Yan
{"title":"基于域广义图卷积自动编码器的新型伺服电机轴承系统多交叉域智能故障诊断方法","authors":"Xiaoli Zhao, Yuanhao Hu, Jiahui Liu, Jianyong Yao, W. Deng, Jian Hu, Zhuanzhe Zhao, Xiaoan Yan","doi":"10.1177/14759217241262722","DOIUrl":null,"url":null,"abstract":"The data measured by the servo motor-bearing system under complex working conditions will present problems such as amplitude fluctuations, unequal impact intervals, and significant differences in data distribution, and so forth. However, the most intelligent fault diagnosis focus on deep learning or transfer learning, which cannot complement knowledge transfer and generalized diagnosis with the structural neighbor relationship under unknown conditions or cross-machine samples. By utilizing Domain Generalized Graph Convolution Autoencoder (DGGCAE), a novel intelligent multicross domain fault diagnosis method for servo-motor bearing systems can be developed. Specifically, the Dirichlet Mixup and Distilled augmentations are first employed to augment the domain data of the feature and label layer for model training. Accordingly, graph representation learning on multisource domain data is mainly performed for the developed algorithm. Afterward, the graph convolutional autoencoder is employed to extract enough generalized high-dimensional features. Furthermore, DGGCAE’s classification loss and domain discrimination loss can be calculated to narrow the distribution gap among multisource domains. Finally, the fault simulation test bench (called servo motor-Cylindrical roller bearing system from Nanjing University of Science and Technology) has validated the development of the diagnostic method.","PeriodicalId":515545,"journal":{"name":"Structural Health Monitoring","volume":"51 47","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel intelligent multicross domain fault diagnosis of servo motor-bearing system based on Domain Generalized Graph Convolution Autoencoder\",\"authors\":\"Xiaoli Zhao, Yuanhao Hu, Jiahui Liu, Jianyong Yao, W. Deng, Jian Hu, Zhuanzhe Zhao, Xiaoan Yan\",\"doi\":\"10.1177/14759217241262722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The data measured by the servo motor-bearing system under complex working conditions will present problems such as amplitude fluctuations, unequal impact intervals, and significant differences in data distribution, and so forth. However, the most intelligent fault diagnosis focus on deep learning or transfer learning, which cannot complement knowledge transfer and generalized diagnosis with the structural neighbor relationship under unknown conditions or cross-machine samples. By utilizing Domain Generalized Graph Convolution Autoencoder (DGGCAE), a novel intelligent multicross domain fault diagnosis method for servo-motor bearing systems can be developed. Specifically, the Dirichlet Mixup and Distilled augmentations are first employed to augment the domain data of the feature and label layer for model training. Accordingly, graph representation learning on multisource domain data is mainly performed for the developed algorithm. Afterward, the graph convolutional autoencoder is employed to extract enough generalized high-dimensional features. Furthermore, DGGCAE’s classification loss and domain discrimination loss can be calculated to narrow the distribution gap among multisource domains. Finally, the fault simulation test bench (called servo motor-Cylindrical roller bearing system from Nanjing University of Science and Technology) has validated the development of the diagnostic method.\",\"PeriodicalId\":515545,\"journal\":{\"name\":\"Structural Health Monitoring\",\"volume\":\"51 47\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/14759217241262722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14759217241262722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel intelligent multicross domain fault diagnosis of servo motor-bearing system based on Domain Generalized Graph Convolution Autoencoder
The data measured by the servo motor-bearing system under complex working conditions will present problems such as amplitude fluctuations, unequal impact intervals, and significant differences in data distribution, and so forth. However, the most intelligent fault diagnosis focus on deep learning or transfer learning, which cannot complement knowledge transfer and generalized diagnosis with the structural neighbor relationship under unknown conditions or cross-machine samples. By utilizing Domain Generalized Graph Convolution Autoencoder (DGGCAE), a novel intelligent multicross domain fault diagnosis method for servo-motor bearing systems can be developed. Specifically, the Dirichlet Mixup and Distilled augmentations are first employed to augment the domain data of the feature and label layer for model training. Accordingly, graph representation learning on multisource domain data is mainly performed for the developed algorithm. Afterward, the graph convolutional autoencoder is employed to extract enough generalized high-dimensional features. Furthermore, DGGCAE’s classification loss and domain discrimination loss can be calculated to narrow the distribution gap among multisource domains. Finally, the fault simulation test bench (called servo motor-Cylindrical roller bearing system from Nanjing University of Science and Technology) has validated the development of the diagnostic method.