新型高效预测混合无损图像编码器

IF 0.5 Q4 TELECOMMUNICATIONS
G. Ulacha, R. Stasinski
{"title":"新型高效预测混合无损图像编码器","authors":"G. Ulacha, R. Stasinski","doi":"10.24425/ijet.2024.149601","DOIUrl":null,"url":null,"abstract":"In the paper a highly efficient algorithm for lossless image coding is described. The algorithm is a predictor blending one, a sample estimate is computed as a weighted sum of estimates given by subpredictors, here 27 ones, hence the name Blend-27. Data compaction performance of Blend-27 is compared to that of numerous other lossless image coding algorithms, including the best currently existing ones. The compared methods are ”classical” ones, as well as those based on Artificial Neural Networks. Performance of Blend-27 as a near-lossless coder is also evaluated. Its computational complexity is lower than that of majority of its direct competitors. The new algorithm appears to be currently the most efficient technique for lossless coding of natural images.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new efficient predictor blending lossless image coder\",\"authors\":\"G. Ulacha, R. Stasinski\",\"doi\":\"10.24425/ijet.2024.149601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper a highly efficient algorithm for lossless image coding is described. The algorithm is a predictor blending one, a sample estimate is computed as a weighted sum of estimates given by subpredictors, here 27 ones, hence the name Blend-27. Data compaction performance of Blend-27 is compared to that of numerous other lossless image coding algorithms, including the best currently existing ones. The compared methods are ”classical” ones, as well as those based on Artificial Neural Networks. Performance of Blend-27 as a near-lossless coder is also evaluated. Its computational complexity is lower than that of majority of its direct competitors. The new algorithm appears to be currently the most efficient technique for lossless coding of natural images.\",\"PeriodicalId\":13922,\"journal\":{\"name\":\"International Journal of Electronics and Telecommunications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electronics and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ijet.2024.149601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronics and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ijet.2024.149601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种高效的无损图像编码算法。该算法是一种预测器混合算法,样本估计值是由子预测器给出的估计值的加权和计算得出的,这里有 27 个子预测器,因此被称为 Blend-27。Blend-27 的数据压缩性能与许多其他无损图像编码算法(包括现有的最佳算法)进行了比较。比较的方法既有 "经典 "方法,也有基于人工神经网络的方法。此外,还对 Blend-27 作为近乎无损编码器的性能进行了评估。其计算复杂度低于大多数直接竞争对手。新算法似乎是目前对自然图像进行无损编码的最有效技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new efficient predictor blending lossless image coder
In the paper a highly efficient algorithm for lossless image coding is described. The algorithm is a predictor blending one, a sample estimate is computed as a weighted sum of estimates given by subpredictors, here 27 ones, hence the name Blend-27. Data compaction performance of Blend-27 is compared to that of numerous other lossless image coding algorithms, including the best currently existing ones. The compared methods are ”classical” ones, as well as those based on Artificial Neural Networks. Performance of Blend-27 as a near-lossless coder is also evaluated. Its computational complexity is lower than that of majority of its direct competitors. The new algorithm appears to be currently the most efficient technique for lossless coding of natural images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信