{"title":"利用街道级图像进行水点检测和绘图的深度学习方法","authors":"Neil Patel","doi":"10.2166/wpt.2024.197","DOIUrl":null,"url":null,"abstract":"\n \n Households in developing countries often rely on alternative shared water sources that exist outside of the datasets of public service providers. This poses a significant challenge to accurately measuring the number of households outside the public service system that use a safe and accessible water source. This article proposes a novel deep learning approach that utilizes a convolutional neural network to detect water points in street-level imagery from Google Street View. Using a case study of the Agege local government area in Lagos, Nigeria, the model detected 36 previously unregistered water points with 94.7% precision.","PeriodicalId":510255,"journal":{"name":"Water Practice & Technology","volume":"54 40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning approach to water point detection and mapping using street-level imagery\",\"authors\":\"Neil Patel\",\"doi\":\"10.2166/wpt.2024.197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Households in developing countries often rely on alternative shared water sources that exist outside of the datasets of public service providers. This poses a significant challenge to accurately measuring the number of households outside the public service system that use a safe and accessible water source. This article proposes a novel deep learning approach that utilizes a convolutional neural network to detect water points in street-level imagery from Google Street View. Using a case study of the Agege local government area in Lagos, Nigeria, the model detected 36 previously unregistered water points with 94.7% precision.\",\"PeriodicalId\":510255,\"journal\":{\"name\":\"Water Practice & Technology\",\"volume\":\"54 40\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Practice & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wpt.2024.197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Practice & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wpt.2024.197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A deep learning approach to water point detection and mapping using street-level imagery
Households in developing countries often rely on alternative shared water sources that exist outside of the datasets of public service providers. This poses a significant challenge to accurately measuring the number of households outside the public service system that use a safe and accessible water source. This article proposes a novel deep learning approach that utilizes a convolutional neural network to detect water points in street-level imagery from Google Street View. Using a case study of the Agege local government area in Lagos, Nigeria, the model detected 36 previously unregistered water points with 94.7% precision.