Lei Sang, Honghao Li, Yiwen Zhang, Yi Zhang, Yun Yang
{"title":"AdaGIN:用于点击率预测的自适应图形交互网络","authors":"Lei Sang, Honghao Li, Yiwen Zhang, Yi Zhang, Yun Yang","doi":"10.1145/3681785","DOIUrl":null,"url":null,"abstract":"The goal of click-through rate (CTR) prediction in recommender systems is to effectively work with input features. However, existing CTR prediction models face three main issues. First, many models use a basic approach for feature combinations, leading to noise and reduced accuracy. Second, there is no consideration for the varying importance of features in different interaction orders, affecting model performance. Third, current model architectures struggle to capture different interaction signals from various semantic spaces, leading to sub-optimal performance. To address these issues, we propose the Adaptive Graph Interaction Network (AdaGIN) with the Graph Neural Networks-based Feature Interaction Module (GFIM), the Multi-semantic Feature Interaction Module (MFIM), and the Negative Feedback-based Search (NFS) algorithm. GFIM explicitly aggregates information between features and assesses their importance, while MFIM captures information from different semantic spaces. NFS uses negative feedback to optimize model complexity. Experimental results show AdaGIN outperforms existing models on large-scale public benchmark datasets.","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AdaGIN: Adaptive Graph Interaction Network for Click-Through Rate Prediction\",\"authors\":\"Lei Sang, Honghao Li, Yiwen Zhang, Yi Zhang, Yun Yang\",\"doi\":\"10.1145/3681785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of click-through rate (CTR) prediction in recommender systems is to effectively work with input features. However, existing CTR prediction models face three main issues. First, many models use a basic approach for feature combinations, leading to noise and reduced accuracy. Second, there is no consideration for the varying importance of features in different interaction orders, affecting model performance. Third, current model architectures struggle to capture different interaction signals from various semantic spaces, leading to sub-optimal performance. To address these issues, we propose the Adaptive Graph Interaction Network (AdaGIN) with the Graph Neural Networks-based Feature Interaction Module (GFIM), the Multi-semantic Feature Interaction Module (MFIM), and the Negative Feedback-based Search (NFS) algorithm. GFIM explicitly aggregates information between features and assesses their importance, while MFIM captures information from different semantic spaces. NFS uses negative feedback to optimize model complexity. Experimental results show AdaGIN outperforms existing models on large-scale public benchmark datasets.\",\"PeriodicalId\":50936,\"journal\":{\"name\":\"ACM Transactions on Information Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3681785\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3681785","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
AdaGIN: Adaptive Graph Interaction Network for Click-Through Rate Prediction
The goal of click-through rate (CTR) prediction in recommender systems is to effectively work with input features. However, existing CTR prediction models face three main issues. First, many models use a basic approach for feature combinations, leading to noise and reduced accuracy. Second, there is no consideration for the varying importance of features in different interaction orders, affecting model performance. Third, current model architectures struggle to capture different interaction signals from various semantic spaces, leading to sub-optimal performance. To address these issues, we propose the Adaptive Graph Interaction Network (AdaGIN) with the Graph Neural Networks-based Feature Interaction Module (GFIM), the Multi-semantic Feature Interaction Module (MFIM), and the Negative Feedback-based Search (NFS) algorithm. GFIM explicitly aggregates information between features and assesses their importance, while MFIM captures information from different semantic spaces. NFS uses negative feedback to optimize model complexity. Experimental results show AdaGIN outperforms existing models on large-scale public benchmark datasets.
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.