应用基于深度学习的模糊系统分析多形性胶质母细胞瘤的总体死亡风险

Cheng-Hong Yang, Tin Ho Cheung, Li-Yeh Chuang
{"title":"应用基于深度学习的模糊系统分析多形性胶质母细胞瘤的总体死亡风险","authors":"Cheng-Hong Yang, Tin Ho Cheung, Li-Yeh Chuang","doi":"10.1088/2632-2153/ad67a9","DOIUrl":null,"url":null,"abstract":"\n Glioblastoma multiforme (GBM) is the most aggressive brain cancer in adults, with 3.2-3.4 cases per 100 thousand. In the US, brain cancer does not rank in the top 10 causes of death, but it remains in the top 15. Therefore, this research proposes a fuzzy-based GRUCoxPH model to identify missense variants associated with a high risk of all-cause mortality in GBM. The study combines various models, including fuzzy logic, Gated Recurrent Units (GRUs), and Cox Proportional Hazards Regression (CoxPh), to identify potential risk factors. The dataset is derived from TCGA-GBM clinicopathological information and mutations to create four risk score models: GRU, CoxPH, GRUCoxPHAddition, and GRUCoxPHMultiplication, analyzing 9 risk factors of the dataset. The Fuzzy-based GRUCoxPH model achieves an average accuracy of 86.97%, outperforming other models. This model demonstrates its ability to classify and identify missense variants associated with mortality in GBM, potentially advancing cancer research.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"6 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Deep Learning-based Fuzzy Systems to Analyze the Overall Risk of Mortality in Glioblastoma Multiforme\",\"authors\":\"Cheng-Hong Yang, Tin Ho Cheung, Li-Yeh Chuang\",\"doi\":\"10.1088/2632-2153/ad67a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Glioblastoma multiforme (GBM) is the most aggressive brain cancer in adults, with 3.2-3.4 cases per 100 thousand. In the US, brain cancer does not rank in the top 10 causes of death, but it remains in the top 15. Therefore, this research proposes a fuzzy-based GRUCoxPH model to identify missense variants associated with a high risk of all-cause mortality in GBM. The study combines various models, including fuzzy logic, Gated Recurrent Units (GRUs), and Cox Proportional Hazards Regression (CoxPh), to identify potential risk factors. The dataset is derived from TCGA-GBM clinicopathological information and mutations to create four risk score models: GRU, CoxPH, GRUCoxPHAddition, and GRUCoxPHMultiplication, analyzing 9 risk factors of the dataset. The Fuzzy-based GRUCoxPH model achieves an average accuracy of 86.97%, outperforming other models. This model demonstrates its ability to classify and identify missense variants associated with mortality in GBM, potentially advancing cancer research.\",\"PeriodicalId\":503691,\"journal\":{\"name\":\"Machine Learning: Science and Technology\",\"volume\":\"6 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning: Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad67a9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad67a9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多形性胶质母细胞瘤(GBM)是最具侵袭性的成人脑癌,每十万人中就有 3.2-3.4 例。在美国,脑癌不在十大死因之列,但仍在十五大死因之列。因此,本研究提出了一种基于模糊的 GRUCoxPH 模型,以识别与 GBM 全因死亡高风险相关的错义变异。该研究结合了各种模型,包括模糊逻辑、门控递归单元(GRUs)和考克斯比例危害回归(CoxPh),以识别潜在的风险因素。该数据集来自 TCGA-GBM 临床病理信息和突变,可创建四种风险评分模型:GRU、CoxPH、GRUCoxPHAddition 和 GRUCoxPHMultiplication,分析数据集中的 9 个风险因素。基于模糊的 GRUCoxPH 模型的平均准确率达到 86.97%,优于其他模型。该模型证明了其分类和识别与 GBM 死亡率相关的错义变异的能力,有望推动癌症研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Deep Learning-based Fuzzy Systems to Analyze the Overall Risk of Mortality in Glioblastoma Multiforme
Glioblastoma multiforme (GBM) is the most aggressive brain cancer in adults, with 3.2-3.4 cases per 100 thousand. In the US, brain cancer does not rank in the top 10 causes of death, but it remains in the top 15. Therefore, this research proposes a fuzzy-based GRUCoxPH model to identify missense variants associated with a high risk of all-cause mortality in GBM. The study combines various models, including fuzzy logic, Gated Recurrent Units (GRUs), and Cox Proportional Hazards Regression (CoxPh), to identify potential risk factors. The dataset is derived from TCGA-GBM clinicopathological information and mutations to create four risk score models: GRU, CoxPH, GRUCoxPHAddition, and GRUCoxPHMultiplication, analyzing 9 risk factors of the dataset. The Fuzzy-based GRUCoxPH model achieves an average accuracy of 86.97%, outperforming other models. This model demonstrates its ability to classify and identify missense variants associated with mortality in GBM, potentially advancing cancer research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信