H. Yi, Zifeng Yang, Deqiang Chang, Xinjiao Tian, Jingxian Liu
{"title":"混合式湿式除尘器的阻力特性和除尘性能实验研究","authors":"H. Yi, Zifeng Yang, Deqiang Chang, Xinjiao Tian, Jingxian Liu","doi":"10.1063/5.0206725","DOIUrl":null,"url":null,"abstract":"With their advantages of high dust removal efficiency and low drag characteristics, hybrid wet-filter precipitators have great potential for dust control in coal mines, but the underlying mechanisms are not well understood. In this study, to help fill this knowledge gap, a hybrid wet-filter precipitator consisting of a 40-layer metal filter and a defogger device is designed and a prototype is constructed. Experiments are conducted to investigate its drag characteristics under wind velocities from 0.85 to 5.68 m/s and its dust removal performance under wind velocities of 2 and 4 m/s. On the basis of results with the initial design, which show that the dust removal efficiency does not meet the target value of 99%, two rounds of improvement are implemented to enhance the dust removal efficiency. Results show that the defogger device contributes ∼80% of the total drag. The drag from the metal filters is found to increase by over 80% on average after sampling, since some of dust particles are left on the filters, decreasing their porosity. The installation of two-layer air filters on the leeside of the metal filter unit is found to increase the efficiency to 99.89% and 99.80% under wind velocities of 2 and 4 m/s, respectively, although this is at the cost of increased drags. Additionally, it is found that the replacement of the defogger by a 20-layer metal filter is not desirable, since this increases the downstream air humidity to more than 100%, which can cause damage to the centrifugal blower system. Therefore, new designs for the defogger device need to be examined in future studies.","PeriodicalId":517827,"journal":{"name":"International Journal of Fluid Engineering","volume":"12 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study of drag characteristics and dust removal performance of a hybrid wet-filter precipitator\",\"authors\":\"H. Yi, Zifeng Yang, Deqiang Chang, Xinjiao Tian, Jingxian Liu\",\"doi\":\"10.1063/5.0206725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With their advantages of high dust removal efficiency and low drag characteristics, hybrid wet-filter precipitators have great potential for dust control in coal mines, but the underlying mechanisms are not well understood. In this study, to help fill this knowledge gap, a hybrid wet-filter precipitator consisting of a 40-layer metal filter and a defogger device is designed and a prototype is constructed. Experiments are conducted to investigate its drag characteristics under wind velocities from 0.85 to 5.68 m/s and its dust removal performance under wind velocities of 2 and 4 m/s. On the basis of results with the initial design, which show that the dust removal efficiency does not meet the target value of 99%, two rounds of improvement are implemented to enhance the dust removal efficiency. Results show that the defogger device contributes ∼80% of the total drag. The drag from the metal filters is found to increase by over 80% on average after sampling, since some of dust particles are left on the filters, decreasing their porosity. The installation of two-layer air filters on the leeside of the metal filter unit is found to increase the efficiency to 99.89% and 99.80% under wind velocities of 2 and 4 m/s, respectively, although this is at the cost of increased drags. Additionally, it is found that the replacement of the defogger by a 20-layer metal filter is not desirable, since this increases the downstream air humidity to more than 100%, which can cause damage to the centrifugal blower system. Therefore, new designs for the defogger device need to be examined in future studies.\",\"PeriodicalId\":517827,\"journal\":{\"name\":\"International Journal of Fluid Engineering\",\"volume\":\"12 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fluid Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0206725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fluid Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0206725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental study of drag characteristics and dust removal performance of a hybrid wet-filter precipitator
With their advantages of high dust removal efficiency and low drag characteristics, hybrid wet-filter precipitators have great potential for dust control in coal mines, but the underlying mechanisms are not well understood. In this study, to help fill this knowledge gap, a hybrid wet-filter precipitator consisting of a 40-layer metal filter and a defogger device is designed and a prototype is constructed. Experiments are conducted to investigate its drag characteristics under wind velocities from 0.85 to 5.68 m/s and its dust removal performance under wind velocities of 2 and 4 m/s. On the basis of results with the initial design, which show that the dust removal efficiency does not meet the target value of 99%, two rounds of improvement are implemented to enhance the dust removal efficiency. Results show that the defogger device contributes ∼80% of the total drag. The drag from the metal filters is found to increase by over 80% on average after sampling, since some of dust particles are left on the filters, decreasing their porosity. The installation of two-layer air filters on the leeside of the metal filter unit is found to increase the efficiency to 99.89% and 99.80% under wind velocities of 2 and 4 m/s, respectively, although this is at the cost of increased drags. Additionally, it is found that the replacement of the defogger by a 20-layer metal filter is not desirable, since this increases the downstream air humidity to more than 100%, which can cause damage to the centrifugal blower system. Therefore, new designs for the defogger device need to be examined in future studies.