{"title":"用于高效环境修复和电化学能量转换应用的钼酸盐基纳米晶体材料:最新进展","authors":"Ravi Akash, A. S. Nesaraj","doi":"10.14233/ajchem.2024.31836","DOIUrl":null,"url":null,"abstract":"Molybdate-based nanocrystalline materials have been considered as promising candidates in various energy and environmental remediation applications owing to their distinct characteristics and versatile functionalities. This article furnishes a comprehensive overview of recent advancements that have been made in synthesis techniques, characterization and applications of molybdate-based nanocrystalline materials in the realm of energy transformation and ecological restoration technologies. Molybdate-based nanomaterials may be classified as sulfides, phosphates and mixed-metal compounds which can be synthesized effectively by wet chemical method. The mechanisms underlying the enhanced performance of molybdate-based nanocrystalline materials are interpreted, along with strategies for improving their efficiency and stability.","PeriodicalId":8494,"journal":{"name":"Asian Journal of Chemistry","volume":"31 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molybdate-based Nanocrystalline Materials for Efficient Environmental Remediation and Electrochemical Energy Conversion Applications: An Update\",\"authors\":\"Ravi Akash, A. S. Nesaraj\",\"doi\":\"10.14233/ajchem.2024.31836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molybdate-based nanocrystalline materials have been considered as promising candidates in various energy and environmental remediation applications owing to their distinct characteristics and versatile functionalities. This article furnishes a comprehensive overview of recent advancements that have been made in synthesis techniques, characterization and applications of molybdate-based nanocrystalline materials in the realm of energy transformation and ecological restoration technologies. Molybdate-based nanomaterials may be classified as sulfides, phosphates and mixed-metal compounds which can be synthesized effectively by wet chemical method. The mechanisms underlying the enhanced performance of molybdate-based nanocrystalline materials are interpreted, along with strategies for improving their efficiency and stability.\",\"PeriodicalId\":8494,\"journal\":{\"name\":\"Asian Journal of Chemistry\",\"volume\":\"31 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14233/ajchem.2024.31836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14233/ajchem.2024.31836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
Molybdate-based Nanocrystalline Materials for Efficient Environmental Remediation and Electrochemical Energy Conversion Applications: An Update
Molybdate-based nanocrystalline materials have been considered as promising candidates in various energy and environmental remediation applications owing to their distinct characteristics and versatile functionalities. This article furnishes a comprehensive overview of recent advancements that have been made in synthesis techniques, characterization and applications of molybdate-based nanocrystalline materials in the realm of energy transformation and ecological restoration technologies. Molybdate-based nanomaterials may be classified as sulfides, phosphates and mixed-metal compounds which can be synthesized effectively by wet chemical method. The mechanisms underlying the enhanced performance of molybdate-based nanocrystalline materials are interpreted, along with strategies for improving their efficiency and stability.