{"title":"具有吹胀系数和低阶项的椭圆方程的存在性和唯一性结果","authors":"Amine Marah","doi":"10.1007/s13370-024-01207-3","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with the existence and uniqueness results for a class of non-coercive Dirichlet elliptic problems whose model example is </p><div><div><span>$$\\begin{aligned} \\left\\{ \\begin{aligned}&-\\textrm{div}\\Big (\\frac{1}{(m-u)^\\beta } (1+|u|)^q |\\nabla u|^{p-2}\\nabla u+c(x)|u|^{p-2}u \\sin (u-m)\\Big )+g(u)=f\\ \\ \\textrm{in}\\ \\Omega , \\\\&u=0\\ \\ \\textrm{on}\\ {\\partial \\Omega },\\\\ \\end{aligned} \\right. \\end{aligned}$$</span></div></div><p>where <span>\\(\\Omega \\)</span> is a bounded open subset of <span>\\({\\mathbb {R}}^N (N\\ge 2)\\)</span>, <span>\\(1< p < N\\)</span>, <span>\\(m>0\\)</span>, <span>\\(0< \\beta <1\\)</span>, <span>\\(q>0\\)</span>, |<i>c</i>| belongs to <span>\\(L^{\\frac{N}{p-1}}(\\Omega )\\)</span> and <i>g</i> is a continuous function in <span>\\({\\mathbb {R}}\\)</span> which satisfies the sign condition and the data <i>f</i> belongs to <span>\\(L^1(\\Omega )\\)</span>.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"35 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and uniqueness results for an elliptic equation with blowing-up coefficient and lower order term\",\"authors\":\"Amine Marah\",\"doi\":\"10.1007/s13370-024-01207-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper deals with the existence and uniqueness results for a class of non-coercive Dirichlet elliptic problems whose model example is </p><div><div><span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{aligned}&-\\\\textrm{div}\\\\Big (\\\\frac{1}{(m-u)^\\\\beta } (1+|u|)^q |\\\\nabla u|^{p-2}\\\\nabla u+c(x)|u|^{p-2}u \\\\sin (u-m)\\\\Big )+g(u)=f\\\\ \\\\ \\\\textrm{in}\\\\ \\\\Omega , \\\\\\\\&u=0\\\\ \\\\ \\\\textrm{on}\\\\ {\\\\partial \\\\Omega },\\\\\\\\ \\\\end{aligned} \\\\right. \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(\\\\Omega \\\\)</span> is a bounded open subset of <span>\\\\({\\\\mathbb {R}}^N (N\\\\ge 2)\\\\)</span>, <span>\\\\(1< p < N\\\\)</span>, <span>\\\\(m>0\\\\)</span>, <span>\\\\(0< \\\\beta <1\\\\)</span>, <span>\\\\(q>0\\\\)</span>, |<i>c</i>| belongs to <span>\\\\(L^{\\\\frac{N}{p-1}}(\\\\Omega )\\\\)</span> and <i>g</i> is a continuous function in <span>\\\\({\\\\mathbb {R}}\\\\)</span> which satisfies the sign condition and the data <i>f</i> belongs to <span>\\\\(L^1(\\\\Omega )\\\\)</span>.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-024-01207-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01207-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文讨论了一类非胁迫性 Dirichlet 椭圆问题的存在性和唯一性结果,其模型示例为 $$\begin{aligned} &-\textrm{div}\Big (\frac{1}{(m-u)^\beta })\left\{ \begin{aligned}&-\textrm{div}\Big (\frac{1}{(m-u)^\beta })(1+|u|)^q |\nabla u|^{p-2}\nabla u+c(x)|u|^{p-2}u \sin (u-m)\Big )+g(u)=f\\textrm{in}\\Omega , \&u=0\\textrm{on}\ {\partial \Omega },\\end{aligned}.\(right.\end{aligned}$where \(\Omega \) is a bounded open subset of \({\mathbb {R}}^N (N\ge 2)\),\(1< p < N\),\(m>0\),\(0< \beta <1\),\(q>;0), |c| belongs to \(L^{frac\{N}{p-1}}(\Omega )\) and g is a continuous function in \({\mathbb {R}}\) which satisfies the sign condition and the data f belongs to \(L^1(\Omega )\).
where \(\Omega \) is a bounded open subset of \({\mathbb {R}}^N (N\ge 2)\), \(1< p < N\), \(m>0\), \(0< \beta <1\), \(q>0\), |c| belongs to \(L^{\frac{N}{p-1}}(\Omega )\) and g is a continuous function in \({\mathbb {R}}\) which satisfies the sign condition and the data f belongs to \(L^1(\Omega )\).