Pedro Jesse Jesse Martin, Yingxi Wen, Alexis Woods, Tresor Fayida, Shakira R. Hobbs
{"title":"在不断变化的气候中探索农药迁移、地下水和环境正义:社区参与研究方法","authors":"Pedro Jesse Jesse Martin, Yingxi Wen, Alexis Woods, Tresor Fayida, Shakira R. Hobbs","doi":"10.1088/1748-9326/ad67f3","DOIUrl":null,"url":null,"abstract":"\n The pressing issue of pesticide exposure disproportionately affecting marginalized communities underscores the immediate necessity to tackle pesticide drift from nearby agricultural areas, especially aggravated by the impacts of climate change. Effective measures including stricter regulations, enhanced monitoring, alternative agricultural practices, and community engagement are essential to mitigate environmental injustices and safeguard community health. This article delves into the intricate relationship between pesticide transport, groundwater vulnerability, and environmental justice within the context of climate change. Employing a geospatial analytical hierarchy overlay model, we comprehensively assess the impact of pesticide transport on groundwater vulnerability while scrutinizing climate change and associated environmental justice concerns. Groundwater vulnerability across the basin varies, with 18% classified as very low, 23% as low, 27% as prone, and 20% and 12% as high and very high, respectively, concentrated mainly in the mid-eastern and southern regions due to population density and biodiversity. The research integrates a robust analytical detection technique, with a focus on glyphosate and its metabolites concentrations, to validate and refine spatial models. By engaging with communities, this study enhances understanding of environmental complexities, offering insights for sustainable environmental management.","PeriodicalId":507917,"journal":{"name":"Environmental Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring pesticide transport, groundwater, and environmental justice in a changing climate: A community engaged research approach\",\"authors\":\"Pedro Jesse Jesse Martin, Yingxi Wen, Alexis Woods, Tresor Fayida, Shakira R. Hobbs\",\"doi\":\"10.1088/1748-9326/ad67f3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The pressing issue of pesticide exposure disproportionately affecting marginalized communities underscores the immediate necessity to tackle pesticide drift from nearby agricultural areas, especially aggravated by the impacts of climate change. Effective measures including stricter regulations, enhanced monitoring, alternative agricultural practices, and community engagement are essential to mitigate environmental injustices and safeguard community health. This article delves into the intricate relationship between pesticide transport, groundwater vulnerability, and environmental justice within the context of climate change. Employing a geospatial analytical hierarchy overlay model, we comprehensively assess the impact of pesticide transport on groundwater vulnerability while scrutinizing climate change and associated environmental justice concerns. Groundwater vulnerability across the basin varies, with 18% classified as very low, 23% as low, 27% as prone, and 20% and 12% as high and very high, respectively, concentrated mainly in the mid-eastern and southern regions due to population density and biodiversity. The research integrates a robust analytical detection technique, with a focus on glyphosate and its metabolites concentrations, to validate and refine spatial models. By engaging with communities, this study enhances understanding of environmental complexities, offering insights for sustainable environmental management.\",\"PeriodicalId\":507917,\"journal\":{\"name\":\"Environmental Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-9326/ad67f3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad67f3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring pesticide transport, groundwater, and environmental justice in a changing climate: A community engaged research approach
The pressing issue of pesticide exposure disproportionately affecting marginalized communities underscores the immediate necessity to tackle pesticide drift from nearby agricultural areas, especially aggravated by the impacts of climate change. Effective measures including stricter regulations, enhanced monitoring, alternative agricultural practices, and community engagement are essential to mitigate environmental injustices and safeguard community health. This article delves into the intricate relationship between pesticide transport, groundwater vulnerability, and environmental justice within the context of climate change. Employing a geospatial analytical hierarchy overlay model, we comprehensively assess the impact of pesticide transport on groundwater vulnerability while scrutinizing climate change and associated environmental justice concerns. Groundwater vulnerability across the basin varies, with 18% classified as very low, 23% as low, 27% as prone, and 20% and 12% as high and very high, respectively, concentrated mainly in the mid-eastern and southern regions due to population density and biodiversity. The research integrates a robust analytical detection technique, with a focus on glyphosate and its metabolites concentrations, to validate and refine spatial models. By engaging with communities, this study enhances understanding of environmental complexities, offering insights for sustainable environmental management.