通过在氧气环境中退火的氧化铟钨和氧化锌工程异质结通道提高 TFT 的稳定性和迁移率

Nanomaterials Pub Date : 2024-07-26 DOI:10.3390/nano14151252
Seong-Hwan Lim, Dong-Gyun Mah, Won-Ju Cho
{"title":"通过在氧气环境中退火的氧化铟钨和氧化锌工程异质结通道提高 TFT 的稳定性和迁移率","authors":"Seong-Hwan Lim, Dong-Gyun Mah, Won-Ju Cho","doi":"10.3390/nano14151252","DOIUrl":null,"url":null,"abstract":"This study demonstrates a significant enhancement in the performance of thin-film transistors (TFTs) in terms of stability and mobility by combining indium–tungsten oxide (IWO) and zinc oxide (ZnO). IWO/ZnO heterojunction structures were fabricated with different channel thickness ratios and annealing environments. The IWO (5 nm)/ZnO (45 nm) TFT, annealed in O2 ambient, exhibited a high mobility of 26.28 cm2/V·s and a maximum drain current of 1.54 μA at a drain voltage of 10 V, outperforming the single-channel ZnO TFT, with values of 3.8 cm2/V·s and 28.08 nA. This mobility enhancement is attributed to the formation of potential wells at the IWO/ZnO junction, resulting in charge accumulation and improved percolation conduction. The engineered heterojunction channel demonstrated superior stability under positive and negative gate bias stresses compared to the single ZnO channel. The analysis of O 1s spectra showed OI, OII, and OIII peaks, confirming the theoretical mechanism. A bias temperature stress test revealed superior charge-trapping time characteristics at temperatures of 25, 55, and 85 °C compared with the single ZnO channel. The proposed IWO/ZnO heterojunction channel overcomes the limitations of the single ZnO channel and presents an attractive approach for developing TFT-based devices having excellent stability and enhanced mobility.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"21 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Stability and Mobility of TFTs via Indium–Tungsten Oxide and Zinc Oxide Engineered Heterojunction Channels Annealed in Oxygen Ambient\",\"authors\":\"Seong-Hwan Lim, Dong-Gyun Mah, Won-Ju Cho\",\"doi\":\"10.3390/nano14151252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study demonstrates a significant enhancement in the performance of thin-film transistors (TFTs) in terms of stability and mobility by combining indium–tungsten oxide (IWO) and zinc oxide (ZnO). IWO/ZnO heterojunction structures were fabricated with different channel thickness ratios and annealing environments. The IWO (5 nm)/ZnO (45 nm) TFT, annealed in O2 ambient, exhibited a high mobility of 26.28 cm2/V·s and a maximum drain current of 1.54 μA at a drain voltage of 10 V, outperforming the single-channel ZnO TFT, with values of 3.8 cm2/V·s and 28.08 nA. This mobility enhancement is attributed to the formation of potential wells at the IWO/ZnO junction, resulting in charge accumulation and improved percolation conduction. The engineered heterojunction channel demonstrated superior stability under positive and negative gate bias stresses compared to the single ZnO channel. The analysis of O 1s spectra showed OI, OII, and OIII peaks, confirming the theoretical mechanism. A bias temperature stress test revealed superior charge-trapping time characteristics at temperatures of 25, 55, and 85 °C compared with the single ZnO channel. The proposed IWO/ZnO heterojunction channel overcomes the limitations of the single ZnO channel and presents an attractive approach for developing TFT-based devices having excellent stability and enhanced mobility.\",\"PeriodicalId\":508599,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"21 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14151252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nano14151252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究表明,通过结合氧化铟钨(IWO)和氧化锌(ZnO),薄膜晶体管(TFT)在稳定性和迁移率方面的性能得到了显著提高。我们采用不同的沟道厚度比和退火环境制作了 IWO/ZnO 异质结结构。在氧气环境中退火的 IWO(5 nm)/ZnO(45 nm)TFT 显示出 26.28 cm2/V-s 的高迁移率,在 10 V 漏极电压下的最大漏极电流为 1.54 μA,优于单通道 ZnO TFT 的 3.8 cm2/V-s 和 28.08 nA。这种迁移率的提高归因于 IWO/ZnO 结处形成了势阱,导致电荷积累并改善了渗流传导。与单一氧化锌沟道相比,工程异质结沟道在正负栅极偏压应力下表现出更高的稳定性。O 1s 光谱分析显示出 OI、OII 和 OIII 峰,证实了理论机制。偏压温度应力测试表明,与单 ZnO 沟道相比,在 25、55 和 85 ℃ 温度条件下,电荷捕获时间特性更为出色。所提出的 IWO/ZnO 异质结沟道克服了单一 ZnO 沟道的局限性,为开发具有出色稳定性和更高迁移率的 TFT 器件提供了一种极具吸引力的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the Stability and Mobility of TFTs via Indium–Tungsten Oxide and Zinc Oxide Engineered Heterojunction Channels Annealed in Oxygen Ambient
This study demonstrates a significant enhancement in the performance of thin-film transistors (TFTs) in terms of stability and mobility by combining indium–tungsten oxide (IWO) and zinc oxide (ZnO). IWO/ZnO heterojunction structures were fabricated with different channel thickness ratios and annealing environments. The IWO (5 nm)/ZnO (45 nm) TFT, annealed in O2 ambient, exhibited a high mobility of 26.28 cm2/V·s and a maximum drain current of 1.54 μA at a drain voltage of 10 V, outperforming the single-channel ZnO TFT, with values of 3.8 cm2/V·s and 28.08 nA. This mobility enhancement is attributed to the formation of potential wells at the IWO/ZnO junction, resulting in charge accumulation and improved percolation conduction. The engineered heterojunction channel demonstrated superior stability under positive and negative gate bias stresses compared to the single ZnO channel. The analysis of O 1s spectra showed OI, OII, and OIII peaks, confirming the theoretical mechanism. A bias temperature stress test revealed superior charge-trapping time characteristics at temperatures of 25, 55, and 85 °C compared with the single ZnO channel. The proposed IWO/ZnO heterojunction channel overcomes the limitations of the single ZnO channel and presents an attractive approach for developing TFT-based devices having excellent stability and enhanced mobility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信