应用基因改造(1,1)预测克西亚红松(Pinus Kesiya var.

Chunxi Gu, Zhenyan Zhou, Chang Liu, Wangfei Zhang, Zhengdao Yang, Wenwu Zhou, Guanglong Ou
{"title":"应用基因改造(1,1)预测克西亚红松(Pinus Kesiya var.","authors":"Chunxi Gu, Zhenyan Zhou, Chang Liu, Wangfei Zhang, Zhengdao Yang, Wenwu Zhou, Guanglong Ou","doi":"10.3389/ffgc.2024.1298804","DOIUrl":null,"url":null,"abstract":"Amid global carbon reduction and climate action, precise forest carbon storage estimation is crucial for comprehending the carbon cycle. This study forecasts P. kesiya var. langbianensis forests’ 2030 stand carbon storage using data from 81 permanent plots across three Yunnan Province forest surveys and remote sensing. Findings: (1) In 2000, storage ranged from 26 to 38 t·hm−2. Central areas had higher values; southwest and southeast exceeded northwest and northeast. By 2010, storage grew eastward, receded northward. By 2020, east storage declined, southwest rose. (2) GM (1,1) model: posterior difference C 0.001, R2 power function model 0.945, GM (1,1) p value 0.999, power function model p value 0.997. (3) Predictions: Cosivarang border forest’s 2030 carbon stock 2850.804 t·hm−2, up 103.463 t·hm−2 from 2000. At 2022’s certified Emission Reduction carbon price of 60 yuan/ton, 2030’s carbon asset value per unit (t·hm−2) approx. 6207.78 Yuan, compared to 2000. Integrating gray system theory, especially GM (1,1) model, robustly addresses “small data and uncertainty” system challenges. Introducing GM (1,1) gray theory in forestry research offers fresh insight into forest carbon sink dynamics.","PeriodicalId":507254,"journal":{"name":"Frontiers in Forests and Global Change","volume":"23 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of GM (1,1) to predict the dynamics of stand carbon storage in Pinus Kesiya var. langbianensis natural forests\",\"authors\":\"Chunxi Gu, Zhenyan Zhou, Chang Liu, Wangfei Zhang, Zhengdao Yang, Wenwu Zhou, Guanglong Ou\",\"doi\":\"10.3389/ffgc.2024.1298804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amid global carbon reduction and climate action, precise forest carbon storage estimation is crucial for comprehending the carbon cycle. This study forecasts P. kesiya var. langbianensis forests’ 2030 stand carbon storage using data from 81 permanent plots across three Yunnan Province forest surveys and remote sensing. Findings: (1) In 2000, storage ranged from 26 to 38 t·hm−2. Central areas had higher values; southwest and southeast exceeded northwest and northeast. By 2010, storage grew eastward, receded northward. By 2020, east storage declined, southwest rose. (2) GM (1,1) model: posterior difference C 0.001, R2 power function model 0.945, GM (1,1) p value 0.999, power function model p value 0.997. (3) Predictions: Cosivarang border forest’s 2030 carbon stock 2850.804 t·hm−2, up 103.463 t·hm−2 from 2000. At 2022’s certified Emission Reduction carbon price of 60 yuan/ton, 2030’s carbon asset value per unit (t·hm−2) approx. 6207.78 Yuan, compared to 2000. Integrating gray system theory, especially GM (1,1) model, robustly addresses “small data and uncertainty” system challenges. Introducing GM (1,1) gray theory in forestry research offers fresh insight into forest carbon sink dynamics.\",\"PeriodicalId\":507254,\"journal\":{\"name\":\"Frontiers in Forests and Global Change\",\"volume\":\"23 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Forests and Global Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/ffgc.2024.1298804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Forests and Global Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ffgc.2024.1298804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在全球碳减排和气候行动中,精确估算森林碳储量对于理解碳循环至关重要。本研究利用云南省三次森林调查中 81 个永久性地块的数据和遥感技术,预测了 P. kesiya var.研究结果:(1)2000 年,碳储量介于 26 到 38 t-hm-2 之间。中部地区碳储量较高;西南和东南地区超过西北和东北地区。到 2010 年,蓄积量向东增加,向北减少。到 2020 年,东部储量下降,西南部上升。(2)GM(1,1)模型:后差 C 0.001,R2 幂函数模型 0.945,GM(1,1)P 值 0.999,幂函数模型 P 值 0.997。(3) 预测:科西瓦朗边境森林 2030 年碳储量为 2850.804 t-hm-2,比 2000 年增加 103.463 t-hm-2。按 2022 年核证减排碳价 60 元/吨计算,2030 年单位碳资产价值(t-hm-2)约为 6207.78 元,高于 2000 年。结合灰色系统理论,特别是 GM(1,1)模型,有力地解决了 "小数据和不确定性 "系统难题。在林业研究中引入 GM(1,1)灰色理论,可为森林碳汇动态研究提供新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of GM (1,1) to predict the dynamics of stand carbon storage in Pinus Kesiya var. langbianensis natural forests
Amid global carbon reduction and climate action, precise forest carbon storage estimation is crucial for comprehending the carbon cycle. This study forecasts P. kesiya var. langbianensis forests’ 2030 stand carbon storage using data from 81 permanent plots across three Yunnan Province forest surveys and remote sensing. Findings: (1) In 2000, storage ranged from 26 to 38 t·hm−2. Central areas had higher values; southwest and southeast exceeded northwest and northeast. By 2010, storage grew eastward, receded northward. By 2020, east storage declined, southwest rose. (2) GM (1,1) model: posterior difference C 0.001, R2 power function model 0.945, GM (1,1) p value 0.999, power function model p value 0.997. (3) Predictions: Cosivarang border forest’s 2030 carbon stock 2850.804 t·hm−2, up 103.463 t·hm−2 from 2000. At 2022’s certified Emission Reduction carbon price of 60 yuan/ton, 2030’s carbon asset value per unit (t·hm−2) approx. 6207.78 Yuan, compared to 2000. Integrating gray system theory, especially GM (1,1) model, robustly addresses “small data and uncertainty” system challenges. Introducing GM (1,1) gray theory in forestry research offers fresh insight into forest carbon sink dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信