{"title":"论𝑝-自洽解析空间的同调 I:基本比较定理","authors":"Pierre Colmez, Wiesława Nizioł","doi":"10.1090/jag/835","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this paper is to prove a basic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic comparison theorem for smooth rigid analytic and dagger varieties over the algebraic closure <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C\">\n <mml:semantics>\n <mml:mi>C</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">C</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic field: <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic pro-étale cohomology, in a stable range, can be expressed as a filtered Frobenius eigenspace of de Rham cohomology (over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper B Subscript d upper R Superscript plus\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">B</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>dR</mml:mi>\n </mml:mrow>\n <mml:mo>+</mml:mo>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">{\\mathbf B}^+_{\\operatorname {dR} }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>). The key computation is the passage from absolute crystalline cohomology to Hyodo–Kato cohomology and the construction of the related Hyodo–Kato isomorphism. We also “geometrize” our comparison theorem by turning <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic pro-étale and syntomic cohomologies into sheaves on the category <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal e normal r normal f Subscript upper C\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">P</mml:mi>\n <mml:mi mathvariant=\"normal\">e</mml:mi>\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n <mml:mi mathvariant=\"normal\">f</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mi>C</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">{\\mathrm {Perf}}_C</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of perfectoid spaces over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C\">\n <mml:semantics>\n <mml:mi>C</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">C</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and the period morphisms into maps between such sheaves (this geometrization will be crucial in our study of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript normal s normal t\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">s</mml:mi>\n <mml:mi mathvariant=\"normal\">t</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">C_{\\mathrm {st}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-conjecture in the sequel to this paper and in the formulation of duality for geometric <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic pro-étale cohomology).</p>","PeriodicalId":0,"journal":{"name":"","volume":"28 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the cohomology of 𝑝-adic analytic spaces, I: The basic comparison theorem\",\"authors\":\"Pierre Colmez, Wiesława Nizioł\",\"doi\":\"10.1090/jag/835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The purpose of this paper is to prove a basic <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-adic comparison theorem for smooth rigid analytic and dagger varieties over the algebraic closure <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C\\\">\\n <mml:semantics>\\n <mml:mi>C</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-adic field: <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-adic pro-étale cohomology, in a stable range, can be expressed as a filtered Frobenius eigenspace of de Rham cohomology (over <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"bold upper B Subscript d upper R Superscript plus\\\">\\n <mml:semantics>\\n <mml:msubsup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"bold\\\">B</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>dR</mml:mi>\\n </mml:mrow>\\n <mml:mo>+</mml:mo>\\n </mml:msubsup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathbf B}^+_{\\\\operatorname {dR} }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>). The key computation is the passage from absolute crystalline cohomology to Hyodo–Kato cohomology and the construction of the related Hyodo–Kato isomorphism. We also “geometrize” our comparison theorem by turning <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-adic pro-étale and syntomic cohomologies into sheaves on the category <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper P normal e normal r normal f Subscript upper C\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">P</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">e</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">r</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">f</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mi>C</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathrm {Perf}}_C</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of perfectoid spaces over <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C\\\">\\n <mml:semantics>\\n <mml:mi>C</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and the period morphisms into maps between such sheaves (this geometrization will be crucial in our study of the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Subscript normal s normal t\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">s</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">t</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C_{\\\\mathrm {st}}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-conjecture in the sequel to this paper and in the formulation of duality for geometric <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-adic pro-étale cohomology).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":\"28 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文的目的是证明在一个 p p -adic 场的代数闭包 C C 上的光滑刚性解析变种和匕首变种的一个基本 p p -adic 比较定理:在一个稳定范围内,p p -adic pro-étale cohomology 可以表示为 de Rham cohomology (over B dR + {\mathbf B}^+_{\operatorname {dR}) 的滤波 Frobenius 特征空间。} ).关键的计算是从绝对晶体同调到兵多-加藤同调的过程,以及相关的兵多-加藤同构的构造。我们还 "几何化 "了我们的比较定理,把 p p -adic pro-étale 和 syntomic cohomologies 转化为在 C C 上的完形空间类别 P e r f C {\mathrm {Perf}}_C 上的剪子,并把周期态变转化为这些剪子之间的映射(这种几何化将在我们对 C s t C_{\mathrm {st}} 的研究中起到关键作用)。 -猜想以及几何 p p -adic pro-étale cohomology 的对偶性表述中至关重要)。
On the cohomology of 𝑝-adic analytic spaces, I: The basic comparison theorem
The purpose of this paper is to prove a basic pp-adic comparison theorem for smooth rigid analytic and dagger varieties over the algebraic closure CC of a pp-adic field: pp-adic pro-étale cohomology, in a stable range, can be expressed as a filtered Frobenius eigenspace of de Rham cohomology (over BdR+{\mathbf B}^+_{\operatorname {dR} }). The key computation is the passage from absolute crystalline cohomology to Hyodo–Kato cohomology and the construction of the related Hyodo–Kato isomorphism. We also “geometrize” our comparison theorem by turning pp-adic pro-étale and syntomic cohomologies into sheaves on the category PerfC{\mathrm {Perf}}_C of perfectoid spaces over CC and the period morphisms into maps between such sheaves (this geometrization will be crucial in our study of the CstC_{\mathrm {st}}-conjecture in the sequel to this paper and in the formulation of duality for geometric pp-adic pro-étale cohomology).