关于凯勒流形上的瓦法-维滕方程

Xuemiao Chen
{"title":"关于凯勒流形上的瓦法-维滕方程","authors":"Xuemiao Chen","doi":"10.1515/crelle-2024-0044","DOIUrl":null,"url":null,"abstract":"\n In this paper, we study the analytic properties of solutions to the Vafa–Witten equation over a compact Kähler manifold.\nSimple obstructions to the existence of nontrivial solutions are identified.\nThe gauge theoretical compactness for the \n \n \n \n C\n ∗\n \n \n \n \\mathbb{C}^{*}\n \n invariant locus of the moduli space is shown to behave similarly to the Hermitian Yang–Mills connections.\nMore generally, this holds for solutions with uniformly bounded spectral covers such as nilpotent solutions.\nWhen spectral covers are unbounded, we manage to take limits of the renormalized Higgs fields which are intrinsically characterized by the convergence of the associated spectral covers.\nThis gives a simpler proof for Taubes’ results on rank two solutions over Kähler surfaces together with a new complex geometric interpretation.\nThe moduli space of \n \n \n \n SU\n ⁢\n \n (\n 2\n )\n \n \n \n \n \\mathsf{SU}(2)\n \n monopoles and some related examples are also discussed in the final section.","PeriodicalId":508691,"journal":{"name":"Journal für die reine und angewandte Mathematik (Crelles Journal)","volume":"28 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Vafa–Witten equations over Kähler manifolds\",\"authors\":\"Xuemiao Chen\",\"doi\":\"10.1515/crelle-2024-0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we study the analytic properties of solutions to the Vafa–Witten equation over a compact Kähler manifold.\\nSimple obstructions to the existence of nontrivial solutions are identified.\\nThe gauge theoretical compactness for the \\n \\n \\n \\n C\\n ∗\\n \\n \\n \\n \\\\mathbb{C}^{*}\\n \\n invariant locus of the moduli space is shown to behave similarly to the Hermitian Yang–Mills connections.\\nMore generally, this holds for solutions with uniformly bounded spectral covers such as nilpotent solutions.\\nWhen spectral covers are unbounded, we manage to take limits of the renormalized Higgs fields which are intrinsically characterized by the convergence of the associated spectral covers.\\nThis gives a simpler proof for Taubes’ results on rank two solutions over Kähler surfaces together with a new complex geometric interpretation.\\nThe moduli space of \\n \\n \\n \\n SU\\n ⁢\\n \\n (\\n 2\\n )\\n \\n \\n \\n \\n \\\\mathsf{SU}(2)\\n \\n monopoles and some related examples are also discussed in the final section.\",\"PeriodicalId\":508691,\"journal\":{\"name\":\"Journal für die reine und angewandte Mathematik (Crelles Journal)\",\"volume\":\"28 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal für die reine und angewandte Mathematik (Crelles Journal)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2024-0044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal für die reine und angewandte Mathematik (Crelles Journal)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/crelle-2024-0044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了紧凑凯勒流形上的瓦法-维滕方程的解的分析性质,发现了非微观解存在的简单障碍,证明了模空间的C∗\mathbb{C}^{*}不变位点的量规理论紧凑性与赫米蒂杨-米尔斯连接的行为相似。最后一节还讨论了 SU ( 2 ) \mathsf{SU}(2)单极的模空间和一些相关的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Vafa–Witten equations over Kähler manifolds
In this paper, we study the analytic properties of solutions to the Vafa–Witten equation over a compact Kähler manifold. Simple obstructions to the existence of nontrivial solutions are identified. The gauge theoretical compactness for the C ∗ \mathbb{C}^{*} invariant locus of the moduli space is shown to behave similarly to the Hermitian Yang–Mills connections. More generally, this holds for solutions with uniformly bounded spectral covers such as nilpotent solutions. When spectral covers are unbounded, we manage to take limits of the renormalized Higgs fields which are intrinsically characterized by the convergence of the associated spectral covers. This gives a simpler proof for Taubes’ results on rank two solutions over Kähler surfaces together with a new complex geometric interpretation. The moduli space of SU ⁢ ( 2 ) \mathsf{SU}(2) monopoles and some related examples are also discussed in the final section.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信