{"title":"根据相似性、互动性和信任度对 Twitter 好友进行动态分组,以考虑不断发展的关系","authors":"Nisha P. Shetty, Balachandra Muniyal, Leander Melroy Maben, Rithika Jayaraj, Sameer Saxena","doi":"10.1049/cmu2.12807","DOIUrl":null,"url":null,"abstract":"<p>Online social networks have become ubiquitous, allowing users to share opinions on various topics. However, oversharing can compromise privacy, leading to potential blackmail or fraud. Current platforms lack friend categorization based on trust levels. This study proposes simulating real-world friendships by grouping users into three categories: acquaintances, friends, and close friends, based on trust and engagement. It also introduces a dynamic method to adjust relationship status over time, considering users' past and present offenses against peers. The proposed system automatically updates friend lists, eliminating manual grouping. It calculates relationship strength by considering all components of online social networks and trust variations caused by user attacks. This method can be integrated with clustering algorithms on popular platforms like Facebook, Twitter, and Instagram to enable constrained sharing. By implementing this system, users can better control their information sharing based on trust levels, reducing privacy risks. The dynamic nature of the relationship status adjustment ensures that the system remains relevant as user interactions evolve over time. This approach offers a more nuanced and secure social networking experience, reflecting real-world relationship dynamics in the digital sphere.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 17","pages":"1018-1048"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12807","citationCount":"0","resultStr":"{\"title\":\"Dynamic Twitter friend grouping based on similarity, interaction, and trust to account for ever-evolving relationships\",\"authors\":\"Nisha P. Shetty, Balachandra Muniyal, Leander Melroy Maben, Rithika Jayaraj, Sameer Saxena\",\"doi\":\"10.1049/cmu2.12807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Online social networks have become ubiquitous, allowing users to share opinions on various topics. However, oversharing can compromise privacy, leading to potential blackmail or fraud. Current platforms lack friend categorization based on trust levels. This study proposes simulating real-world friendships by grouping users into three categories: acquaintances, friends, and close friends, based on trust and engagement. It also introduces a dynamic method to adjust relationship status over time, considering users' past and present offenses against peers. The proposed system automatically updates friend lists, eliminating manual grouping. It calculates relationship strength by considering all components of online social networks and trust variations caused by user attacks. This method can be integrated with clustering algorithms on popular platforms like Facebook, Twitter, and Instagram to enable constrained sharing. By implementing this system, users can better control their information sharing based on trust levels, reducing privacy risks. The dynamic nature of the relationship status adjustment ensures that the system remains relevant as user interactions evolve over time. This approach offers a more nuanced and secure social networking experience, reflecting real-world relationship dynamics in the digital sphere.</p>\",\"PeriodicalId\":55001,\"journal\":{\"name\":\"IET Communications\",\"volume\":\"18 17\",\"pages\":\"1018-1048\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12807\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12807\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12807","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Dynamic Twitter friend grouping based on similarity, interaction, and trust to account for ever-evolving relationships
Online social networks have become ubiquitous, allowing users to share opinions on various topics. However, oversharing can compromise privacy, leading to potential blackmail or fraud. Current platforms lack friend categorization based on trust levels. This study proposes simulating real-world friendships by grouping users into three categories: acquaintances, friends, and close friends, based on trust and engagement. It also introduces a dynamic method to adjust relationship status over time, considering users' past and present offenses against peers. The proposed system automatically updates friend lists, eliminating manual grouping. It calculates relationship strength by considering all components of online social networks and trust variations caused by user attacks. This method can be integrated with clustering algorithms on popular platforms like Facebook, Twitter, and Instagram to enable constrained sharing. By implementing this system, users can better control their information sharing based on trust levels, reducing privacy risks. The dynamic nature of the relationship status adjustment ensures that the system remains relevant as user interactions evolve over time. This approach offers a more nuanced and secure social networking experience, reflecting real-world relationship dynamics in the digital sphere.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf