旗状变种上同质束的 SL2(ℝ)- 作用的静态量纲

Alexander Gorodnik, Jialun Li, Cagri Sert
{"title":"旗状变种上同质束的 SL2(ℝ)- 作用的静态量纲","authors":"Alexander Gorodnik, Jialun Li, Cagri Sert","doi":"10.1515/crelle-2024-0043","DOIUrl":null,"url":null,"abstract":"\n <jats:p>Let 𝐺 be a real semisimple Lie group with finite centre and without compact factors, <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>Q</m:mi>\n <m:mo><</m:mo>\n <m:mi>G</m:mi>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0043_ineq_0001.png\"/>\n <jats:tex-math>Q<G</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> a parabolic subgroup and 𝑋 a homogeneous space of 𝐺 admitting an equivariant projection on the flag variety <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>G</m:mi>\n <m:mo>/</m:mo>\n <m:mi>Q</m:mi>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0043_ineq_0002.png\"/>\n <jats:tex-math>G/Q</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> with fibres given by copies of lattice quotients of a semisimple factor of 𝑄.\nGiven a probability measure 𝜇, Zariski-dense in a copy of <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>H</m:mi>\n <m:mo>=</m:mo>\n <m:mrow>\n <m:msub>\n <m:mi>SL</m:mi>\n <m:mn>2</m:mn>\n </m:msub>\n <m:mo>⁡</m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0043_ineq_0003.png\"/>\n <jats:tex-math>H=\\operatorname{SL}_{2}(\\mathbb{R})</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> in 𝐺, we give a description of 𝜇-stationary probability measures on 𝑋 and prove corresponding equidistribution results.\nContrary to the results of Benoist–Quint corresponding to the case <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>G</m:mi>\n <m:mo>=</m:mo>\n <m:mi>Q</m:mi>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0043_ineq_0004.png\"/>\n <jats:tex-math>G=Q</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, the type of stationary measures that 𝜇 admits depends strongly on the position of 𝐻 relative to 𝑄.\nWe describe possible cases and treat all but one of them, among others using ideas from the works of Eskin–Mirzakhani and Eskin–Lindenstrauss.</jats:p>","PeriodicalId":508691,"journal":{"name":"Journal für die reine und angewandte Mathematik (Crelles Journal)","volume":"50 47","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stationary measures for SL2(ℝ)-actions on homogeneous bundles over flag varieties\",\"authors\":\"Alexander Gorodnik, Jialun Li, Cagri Sert\",\"doi\":\"10.1515/crelle-2024-0043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>Let 𝐺 be a real semisimple Lie group with finite centre and without compact factors, <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mi>Q</m:mi>\\n <m:mo><</m:mo>\\n <m:mi>G</m:mi>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0043_ineq_0001.png\\\"/>\\n <jats:tex-math>Q<G</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> a parabolic subgroup and 𝑋 a homogeneous space of 𝐺 admitting an equivariant projection on the flag variety <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mi>G</m:mi>\\n <m:mo>/</m:mo>\\n <m:mi>Q</m:mi>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0043_ineq_0002.png\\\"/>\\n <jats:tex-math>G/Q</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> with fibres given by copies of lattice quotients of a semisimple factor of 𝑄.\\nGiven a probability measure 𝜇, Zariski-dense in a copy of <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mi>H</m:mi>\\n <m:mo>=</m:mo>\\n <m:mrow>\\n <m:msub>\\n <m:mi>SL</m:mi>\\n <m:mn>2</m:mn>\\n </m:msub>\\n <m:mo>⁡</m:mo>\\n <m:mrow>\\n <m:mo stretchy=\\\"false\\\">(</m:mo>\\n <m:mi mathvariant=\\\"double-struck\\\">R</m:mi>\\n <m:mo stretchy=\\\"false\\\">)</m:mo>\\n </m:mrow>\\n </m:mrow>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0043_ineq_0003.png\\\"/>\\n <jats:tex-math>H=\\\\operatorname{SL}_{2}(\\\\mathbb{R})</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> in 𝐺, we give a description of 𝜇-stationary probability measures on 𝑋 and prove corresponding equidistribution results.\\nContrary to the results of Benoist–Quint corresponding to the case <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mi>G</m:mi>\\n <m:mo>=</m:mo>\\n <m:mi>Q</m:mi>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0043_ineq_0004.png\\\"/>\\n <jats:tex-math>G=Q</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, the type of stationary measures that 𝜇 admits depends strongly on the position of 𝐻 relative to 𝑄.\\nWe describe possible cases and treat all but one of them, among others using ideas from the works of Eskin–Mirzakhani and Eskin–Lindenstrauss.</jats:p>\",\"PeriodicalId\":508691,\"journal\":{\"name\":\"Journal für die reine und angewandte Mathematik (Crelles Journal)\",\"volume\":\"50 47\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal für die reine und angewandte Mathematik (Crelles Journal)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2024-0043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal für die reine und angewandte Mathematik (Crelles Journal)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/crelle-2024-0043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Let 𝐺 be a real semisimple Lie group with finite centre and without compact factors, Q G Q a parabolic subgroup and 𝑋 a homogeneous space of 𝐺 admitting an equivariant projection on the flag variety G / Q G/Q with fibres given by copies of lattice quotients of a semisimple factor of 𝑄.Given a probability measure 𝜇, Zariski-dense in a copy of H = SL 2 ⁡ ( R ) H=\operatorname{SL}_{2}(\mathbb{R}) in 𝐺, we give a description of 𝜇-stationary probability measures on 𝑋 and prove corresponding equidistribution results.Contrary to the results of Benoist–Quint corresponding to the case G = Q G=Q , the type of stationary measures that 𝜇 admits depends strongly on the position of 𝐻 relative to 𝑄.We describe possible cases and treat all but one of them, among others using ideas from the works of Eskin–Mirzakhani and Eskin–Lindenstrauss.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stationary measures for SL2(ℝ)-actions on homogeneous bundles over flag varieties
Let 𝐺 be a real semisimple Lie group with finite centre and without compact factors, Q < G Q a parabolic subgroup and 𝑋 a homogeneous space of 𝐺 admitting an equivariant projection on the flag variety G / Q G/Q with fibres given by copies of lattice quotients of a semisimple factor of 𝑄. Given a probability measure 𝜇, Zariski-dense in a copy of H = SL 2 ( R ) H=\operatorname{SL}_{2}(\mathbb{R}) in 𝐺, we give a description of 𝜇-stationary probability measures on 𝑋 and prove corresponding equidistribution results. Contrary to the results of Benoist–Quint corresponding to the case G = Q G=Q , the type of stationary measures that 𝜇 admits depends strongly on the position of 𝐻 relative to 𝑄. We describe possible cases and treat all but one of them, among others using ideas from the works of Eskin–Mirzakhani and Eskin–Lindenstrauss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信