{"title":"动态负载识别中的深度递归-卷积神经网络学习与物理卡尔曼滤波比较","authors":"Marios Impraimakis","doi":"10.1177/14759217241262972","DOIUrl":null,"url":null,"abstract":"The dynamic structural load identification capabilities of the gated recurrent unit, long short-term memory, and convolutional neural networks are examined herein. The examination is on realistic small dataset training conditions and on a comparative view to the physics-based residual Kalman filter (RKF). The dynamic load identification suffers from the uncertainty related to obtaining poor predictions when in civil engineering applications only a low number of tests are performed or are available, or when the structural model is unidentifiable. In considering the methods, first, a simulated structure is investigated under a shaker excitation at the top floor. Second, a building in California is investigated under seismic base excitation, which results in loading for all degrees of freedom. Finally, the International Association for Structural Control-American Society of Civil Engineers (IASC-ASCE) structural health monitoring benchmark problem is examined for impact and instant loading conditions. Importantly, the methods are shown to outperform each other on different loading scenarios, while the RKF is shown to outperform the networks in physically parametrized identifiable cases.","PeriodicalId":515545,"journal":{"name":"Structural Health Monitoring","volume":"86 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep recurrent-convolutional neural network learning and physics Kalman filtering comparison in dynamic load identification\",\"authors\":\"Marios Impraimakis\",\"doi\":\"10.1177/14759217241262972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic structural load identification capabilities of the gated recurrent unit, long short-term memory, and convolutional neural networks are examined herein. The examination is on realistic small dataset training conditions and on a comparative view to the physics-based residual Kalman filter (RKF). The dynamic load identification suffers from the uncertainty related to obtaining poor predictions when in civil engineering applications only a low number of tests are performed or are available, or when the structural model is unidentifiable. In considering the methods, first, a simulated structure is investigated under a shaker excitation at the top floor. Second, a building in California is investigated under seismic base excitation, which results in loading for all degrees of freedom. Finally, the International Association for Structural Control-American Society of Civil Engineers (IASC-ASCE) structural health monitoring benchmark problem is examined for impact and instant loading conditions. Importantly, the methods are shown to outperform each other on different loading scenarios, while the RKF is shown to outperform the networks in physically parametrized identifiable cases.\",\"PeriodicalId\":515545,\"journal\":{\"name\":\"Structural Health Monitoring\",\"volume\":\"86 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/14759217241262972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14759217241262972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep recurrent-convolutional neural network learning and physics Kalman filtering comparison in dynamic load identification
The dynamic structural load identification capabilities of the gated recurrent unit, long short-term memory, and convolutional neural networks are examined herein. The examination is on realistic small dataset training conditions and on a comparative view to the physics-based residual Kalman filter (RKF). The dynamic load identification suffers from the uncertainty related to obtaining poor predictions when in civil engineering applications only a low number of tests are performed or are available, or when the structural model is unidentifiable. In considering the methods, first, a simulated structure is investigated under a shaker excitation at the top floor. Second, a building in California is investigated under seismic base excitation, which results in loading for all degrees of freedom. Finally, the International Association for Structural Control-American Society of Civil Engineers (IASC-ASCE) structural health monitoring benchmark problem is examined for impact and instant loading conditions. Importantly, the methods are shown to outperform each other on different loading scenarios, while the RKF is shown to outperform the networks in physically parametrized identifiable cases.