通过实例进行多模式视频搜索--视频质量影响分析

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Guanfeng Wu, Abbas Haider, Xing Tian, Erfan Loweimi, Chi Ho Chan, Mengjie Qian, Awan Muhammad, Ivor Spence, Rob Cooper, Wing W. Y. Ng, Josef Kittler, Mark Gales, Hui Wang
{"title":"通过实例进行多模式视频搜索--视频质量影响分析","authors":"Guanfeng Wu,&nbsp;Abbas Haider,&nbsp;Xing Tian,&nbsp;Erfan Loweimi,&nbsp;Chi Ho Chan,&nbsp;Mengjie Qian,&nbsp;Awan Muhammad,&nbsp;Ivor Spence,&nbsp;Rob Cooper,&nbsp;Wing W. Y. Ng,&nbsp;Josef Kittler,&nbsp;Mark Gales,&nbsp;Hui Wang","doi":"10.1049/cvi2.12303","DOIUrl":null,"url":null,"abstract":"<p>As the proliferation of video content continues, and many video archives lack suitable metadata, therefore, video retrieval, particularly through example-based search, has become increasingly crucial. Existing metadata often fails to meet the needs of specific types of searches, especially when videos contain elements from different modalities, such as visual and audio. Consequently, developing video retrieval methods that can handle multi-modal content is essential. An innovative Multi-modal Video Search by Examples (MVSE) framework is introduced, employing state-of-the-art techniques in its various components. In designing MVSE, the authors focused on accuracy, efficiency, interactivity, and extensibility, with key components including advanced data processing and a user-friendly interface aimed at enhancing search effectiveness and user experience. Furthermore, the framework was comprehensively evaluated, assessing individual components, data quality issues, and overall retrieval performance using high-quality and low-quality BBC archive videos. The evaluation reveals that: (1) multi-modal search yields better results than single-modal search; (2) the quality of video, both visual and audio, has an impact on the query precision. Compared with image query results, audio quality has a greater impact on the query precision (3) a two-stage search process (i.e. searching by Hamming distance based on hashing, followed by searching by Cosine similarity based on embedding); is effective but increases time overhead; (4) large-scale video retrieval is not only feasible but also expected to emerge shortly.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 7","pages":"1017-1033"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12303","citationCount":"0","resultStr":"{\"title\":\"Multi-modal video search by examples—A video quality impact analysis\",\"authors\":\"Guanfeng Wu,&nbsp;Abbas Haider,&nbsp;Xing Tian,&nbsp;Erfan Loweimi,&nbsp;Chi Ho Chan,&nbsp;Mengjie Qian,&nbsp;Awan Muhammad,&nbsp;Ivor Spence,&nbsp;Rob Cooper,&nbsp;Wing W. Y. Ng,&nbsp;Josef Kittler,&nbsp;Mark Gales,&nbsp;Hui Wang\",\"doi\":\"10.1049/cvi2.12303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As the proliferation of video content continues, and many video archives lack suitable metadata, therefore, video retrieval, particularly through example-based search, has become increasingly crucial. Existing metadata often fails to meet the needs of specific types of searches, especially when videos contain elements from different modalities, such as visual and audio. Consequently, developing video retrieval methods that can handle multi-modal content is essential. An innovative Multi-modal Video Search by Examples (MVSE) framework is introduced, employing state-of-the-art techniques in its various components. In designing MVSE, the authors focused on accuracy, efficiency, interactivity, and extensibility, with key components including advanced data processing and a user-friendly interface aimed at enhancing search effectiveness and user experience. Furthermore, the framework was comprehensively evaluated, assessing individual components, data quality issues, and overall retrieval performance using high-quality and low-quality BBC archive videos. The evaluation reveals that: (1) multi-modal search yields better results than single-modal search; (2) the quality of video, both visual and audio, has an impact on the query precision. Compared with image query results, audio quality has a greater impact on the query precision (3) a two-stage search process (i.e. searching by Hamming distance based on hashing, followed by searching by Cosine similarity based on embedding); is effective but increases time overhead; (4) large-scale video retrieval is not only feasible but also expected to emerge shortly.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 7\",\"pages\":\"1017-1033\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12303\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12303\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12303","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着视频内容的不断激增,许多视频档案缺乏合适的元数据,因此,视频检索,尤其是通过基于实例的检索,变得越来越重要。现有的元数据往往无法满足特定类型搜索的需求,尤其是当视频包含视觉和音频等不同模式的元素时。因此,开发能够处理多模式内容的视频检索方法至关重要。本文介绍了一个创新的多模态视频示例搜索(MVSE)框架,该框架的各个组成部分都采用了最先进的技术。在设计 MVSE 时,作者将重点放在准确性、效率、交互性和可扩展性上,其中的关键组件包括高级数据处理和用户友好界面,旨在提高搜索效果和用户体验。此外,还对该框架进行了全面评估,使用高质量和低质量的 BBC 档案视频评估了各个组件、数据质量问题和整体检索性能。评估结果表明(1) 多模态搜索比单模态搜索产生更好的结果;(2) 视频质量,包括视觉和音频质量,对查询精度都有影响。与图像查询结果相比,音频质量对查询精度的影响更大;(3) 两阶段搜索过程(即基于哈希值的汉明距离搜索,然后是基于嵌入的余弦相似度搜索)是有效的,但会增加时间开销;(4) 大规模视频检索不仅可行,而且有望在短期内出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi-modal video search by examples—A video quality impact analysis

Multi-modal video search by examples—A video quality impact analysis

As the proliferation of video content continues, and many video archives lack suitable metadata, therefore, video retrieval, particularly through example-based search, has become increasingly crucial. Existing metadata often fails to meet the needs of specific types of searches, especially when videos contain elements from different modalities, such as visual and audio. Consequently, developing video retrieval methods that can handle multi-modal content is essential. An innovative Multi-modal Video Search by Examples (MVSE) framework is introduced, employing state-of-the-art techniques in its various components. In designing MVSE, the authors focused on accuracy, efficiency, interactivity, and extensibility, with key components including advanced data processing and a user-friendly interface aimed at enhancing search effectiveness and user experience. Furthermore, the framework was comprehensively evaluated, assessing individual components, data quality issues, and overall retrieval performance using high-quality and low-quality BBC archive videos. The evaluation reveals that: (1) multi-modal search yields better results than single-modal search; (2) the quality of video, both visual and audio, has an impact on the query precision. Compared with image query results, audio quality has a greater impact on the query precision (3) a two-stage search process (i.e. searching by Hamming distance based on hashing, followed by searching by Cosine similarity based on embedding); is effective but increases time overhead; (4) large-scale video retrieval is not only feasible but also expected to emerge shortly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信