利用机器学习的小提琴音高模糊簇合成系统

IF 0.7 4区 工程技术 Q4 ENGINEERING, MARINE
Yu Han
{"title":"利用机器学习的小提琴音高模糊簇合成系统","authors":"Yu Han","doi":"10.5750/ijme.v1i1.1396","DOIUrl":null,"url":null,"abstract":"Pitch synthesis with violin sound involves the generation of musical pitches using technology to mimic the distinctive tonal characteristics of a violin. This process typically employs digital signal processing techniques to recreate the timbre, articulation, and nuances of a real violin. Advanced algorithms analyze and model the acoustic properties of a violin sound, allowing for the synthesis of realistic pitch variations and expressive qualities. Whether utilized in electronic music production, virtual instruments, or sound design, pitch synthesis with violin sound aims to emulate the rich and complex sonic palette of the violin, offering musicians and composers versatile tools for creative expression and sonic exploration. In this paper proposed Fuzzy Pitch Clustering Machine Learning (FPC-ML) for the violin Music Pitch Synthesis using Machine Learning. The proposed FPC-ML model uses the Fuzzy Clustering model for the estimation of pitches in the violin music signal. Based on the Fuzzy clustering model membership degree is computed for the proposed FPC-ML for the estimation of the pitch in the violin music. With the estimation of linguistic variables, clustering is performed in the Music signal for the computation of pitches. With the estimated pitches in the violin music, the features are trained in the machine learning model for the classification and estimation of features in the Violin Music. Simulation analysis demonstrated that the proposed FPC-ML model computes the features of the Violin Music Pitch values based on the estimated clustering values synthesis performed for the classification of the Violin Music signal. The proposed FPC-ML technique achieves an accuracy value of 0.98 for the violin signal with an iteration of 20. With the increase in several iterations and epoch, the accuracy of the FPC-ML model is further increased for the synthesis of the Violin Music.","PeriodicalId":50313,"journal":{"name":"International Journal of Maritime Engineering","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy Cluster Pitch Synthesis System for the Violin Sound with Machine Learning\",\"authors\":\"Yu Han\",\"doi\":\"10.5750/ijme.v1i1.1396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pitch synthesis with violin sound involves the generation of musical pitches using technology to mimic the distinctive tonal characteristics of a violin. This process typically employs digital signal processing techniques to recreate the timbre, articulation, and nuances of a real violin. Advanced algorithms analyze and model the acoustic properties of a violin sound, allowing for the synthesis of realistic pitch variations and expressive qualities. Whether utilized in electronic music production, virtual instruments, or sound design, pitch synthesis with violin sound aims to emulate the rich and complex sonic palette of the violin, offering musicians and composers versatile tools for creative expression and sonic exploration. In this paper proposed Fuzzy Pitch Clustering Machine Learning (FPC-ML) for the violin Music Pitch Synthesis using Machine Learning. The proposed FPC-ML model uses the Fuzzy Clustering model for the estimation of pitches in the violin music signal. Based on the Fuzzy clustering model membership degree is computed for the proposed FPC-ML for the estimation of the pitch in the violin music. With the estimation of linguistic variables, clustering is performed in the Music signal for the computation of pitches. With the estimated pitches in the violin music, the features are trained in the machine learning model for the classification and estimation of features in the Violin Music. Simulation analysis demonstrated that the proposed FPC-ML model computes the features of the Violin Music Pitch values based on the estimated clustering values synthesis performed for the classification of the Violin Music signal. The proposed FPC-ML technique achieves an accuracy value of 0.98 for the violin signal with an iteration of 20. With the increase in several iterations and epoch, the accuracy of the FPC-ML model is further increased for the synthesis of the Violin Music.\",\"PeriodicalId\":50313,\"journal\":{\"name\":\"International Journal of Maritime Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Maritime Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5750/ijme.v1i1.1396\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Maritime Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5750/ijme.v1i1.1396","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

小提琴音高合成是指利用技术模仿小提琴独特的音调特征来生成音乐音高。这一过程通常采用数字信号处理技术来重现真实小提琴的音色、发音和细微差别。先进的算法对小提琴声音的声学特性进行分析和建模,从而合成出逼真的音高变化和表现力。无论是在电子音乐制作、虚拟乐器还是声音设计中,用小提琴声音进行音高合成的目的都是模仿小提琴丰富而复杂的音色,为音乐家和作曲家提供创造性表达和声音探索的多功能工具。本文提出的模糊音高聚类机器学习(Fuzzy Pitch Clustering Machine Learning,FPC-ML)可用于使用机器学习的小提琴音乐音高合成。所提出的 FPC-ML 模型使用模糊聚类模型来估计小提琴音乐信号中的音高。根据模糊聚类模型,计算所提出的 FPC-ML 的成员度,以估计小提琴音乐中的音高。通过对语言变量的估计,对音乐信号进行聚类以计算音高。根据小提琴音乐中的估计音高,在机器学习模型中对特征进行训练,以对小提琴音乐中的特征进行分类和估计。仿真分析表明,拟议的 FPC-ML 模型可根据为小提琴音乐信号分类而进行的估计聚类值合成计算小提琴音乐音高值的特征。在迭代 20 次的情况下,所提出的 FPC-ML 技术对小提琴信号的准确度达到了 0.98。随着迭代次数和历时的增加,FPC-ML 模型合成小提琴音乐的准确度进一步提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy Cluster Pitch Synthesis System for the Violin Sound with Machine Learning
Pitch synthesis with violin sound involves the generation of musical pitches using technology to mimic the distinctive tonal characteristics of a violin. This process typically employs digital signal processing techniques to recreate the timbre, articulation, and nuances of a real violin. Advanced algorithms analyze and model the acoustic properties of a violin sound, allowing for the synthesis of realistic pitch variations and expressive qualities. Whether utilized in electronic music production, virtual instruments, or sound design, pitch synthesis with violin sound aims to emulate the rich and complex sonic palette of the violin, offering musicians and composers versatile tools for creative expression and sonic exploration. In this paper proposed Fuzzy Pitch Clustering Machine Learning (FPC-ML) for the violin Music Pitch Synthesis using Machine Learning. The proposed FPC-ML model uses the Fuzzy Clustering model for the estimation of pitches in the violin music signal. Based on the Fuzzy clustering model membership degree is computed for the proposed FPC-ML for the estimation of the pitch in the violin music. With the estimation of linguistic variables, clustering is performed in the Music signal for the computation of pitches. With the estimated pitches in the violin music, the features are trained in the machine learning model for the classification and estimation of features in the Violin Music. Simulation analysis demonstrated that the proposed FPC-ML model computes the features of the Violin Music Pitch values based on the estimated clustering values synthesis performed for the classification of the Violin Music signal. The proposed FPC-ML technique achieves an accuracy value of 0.98 for the violin signal with an iteration of 20. With the increase in several iterations and epoch, the accuracy of the FPC-ML model is further increased for the synthesis of the Violin Music.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: The International Journal of Maritime Engineering (IJME) provides a forum for the reporting and discussion on technical and scientific issues associated with the design and construction of commercial marine vessels . Contributions in the form of papers and notes, together with discussion on published papers are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信