Y. Du, P. A. Benny, R. J. Schlueter, A. Gurary, A. Lum-Jones, C. B. Lassiter, F. M. AlAkwaa, M. Tiirikainen, D. Towner, W. S. Ward, L. X. Garmire
{"title":"对夏威夷多种族队列中脐带造血干细胞的多组学分析揭示了母亲孕前肥胖的代际效应","authors":"Y. Du, P. A. Benny, R. J. Schlueter, A. Gurary, A. Lum-Jones, C. B. Lassiter, F. M. AlAkwaa, M. Tiirikainen, D. Towner, W. S. Ward, L. X. Garmire","doi":"10.1101/2024.07.27.24310936","DOIUrl":null,"url":null,"abstract":"Maternal obesity is a health concern that may predispose newborns to a high risk of medical problems later in life. To understand the transgenerational effect of maternal obesity, we conducted a multi-omics study, using DNA methylation and gene expression in the CD34+/CD38-/Lin- umbilical cord blood hematopoietic stem cells (uHSCs) and metabolomics of the cord blood, all from a multi-ethnic cohort (n=72) from Kapiolani Medical Center for Women and Children in Honolulu, Hawaii (collected between 2016 and 2018). Differential methylation (DM) analysis unveiled a global hypermethylation pattern in the maternal pre-pregnancy obese group (BH adjusted p<0.05), after adjusting for major clinical confounders. Comprehensive functional analysis showed hypermethylation in promoters of genes involved in cell cycle, protein synthesis, immune signaling, and lipid metabolism. Utilizing Shannon entropy on uHSCs methylation, we discerned notably higher quiescence of uHSCs impacted by maternal obesity. Additionally, the integration of multi-omics data-including methylation, gene expression, and metabolomics-provided further evidence of dysfunctions in adipogenesis, erythropoietin production, cell differentiation, and DNA repair, aligning with the findings at the epigenetic level. This study reveals the significant correlation between pre-pregnancy maternal obesity and multi-omics level molecular changes in the uHSCs of offspring, particularly in DNA methylation.","PeriodicalId":506788,"journal":{"name":"medRxiv","volume":"2 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-omics Analysis of Umbilical Cord Hematopoietic Stem Cells from a Multi-ethnic Cohort of Hawaii Reveals the Transgenerational Effect of Maternal Pre-Pregnancy Obesity\",\"authors\":\"Y. Du, P. A. Benny, R. J. Schlueter, A. Gurary, A. Lum-Jones, C. B. Lassiter, F. M. AlAkwaa, M. Tiirikainen, D. Towner, W. S. Ward, L. X. Garmire\",\"doi\":\"10.1101/2024.07.27.24310936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maternal obesity is a health concern that may predispose newborns to a high risk of medical problems later in life. To understand the transgenerational effect of maternal obesity, we conducted a multi-omics study, using DNA methylation and gene expression in the CD34+/CD38-/Lin- umbilical cord blood hematopoietic stem cells (uHSCs) and metabolomics of the cord blood, all from a multi-ethnic cohort (n=72) from Kapiolani Medical Center for Women and Children in Honolulu, Hawaii (collected between 2016 and 2018). Differential methylation (DM) analysis unveiled a global hypermethylation pattern in the maternal pre-pregnancy obese group (BH adjusted p<0.05), after adjusting for major clinical confounders. Comprehensive functional analysis showed hypermethylation in promoters of genes involved in cell cycle, protein synthesis, immune signaling, and lipid metabolism. Utilizing Shannon entropy on uHSCs methylation, we discerned notably higher quiescence of uHSCs impacted by maternal obesity. Additionally, the integration of multi-omics data-including methylation, gene expression, and metabolomics-provided further evidence of dysfunctions in adipogenesis, erythropoietin production, cell differentiation, and DNA repair, aligning with the findings at the epigenetic level. This study reveals the significant correlation between pre-pregnancy maternal obesity and multi-omics level molecular changes in the uHSCs of offspring, particularly in DNA methylation.\",\"PeriodicalId\":506788,\"journal\":{\"name\":\"medRxiv\",\"volume\":\"2 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.27.24310936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.27.24310936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-omics Analysis of Umbilical Cord Hematopoietic Stem Cells from a Multi-ethnic Cohort of Hawaii Reveals the Transgenerational Effect of Maternal Pre-Pregnancy Obesity
Maternal obesity is a health concern that may predispose newborns to a high risk of medical problems later in life. To understand the transgenerational effect of maternal obesity, we conducted a multi-omics study, using DNA methylation and gene expression in the CD34+/CD38-/Lin- umbilical cord blood hematopoietic stem cells (uHSCs) and metabolomics of the cord blood, all from a multi-ethnic cohort (n=72) from Kapiolani Medical Center for Women and Children in Honolulu, Hawaii (collected between 2016 and 2018). Differential methylation (DM) analysis unveiled a global hypermethylation pattern in the maternal pre-pregnancy obese group (BH adjusted p<0.05), after adjusting for major clinical confounders. Comprehensive functional analysis showed hypermethylation in promoters of genes involved in cell cycle, protein synthesis, immune signaling, and lipid metabolism. Utilizing Shannon entropy on uHSCs methylation, we discerned notably higher quiescence of uHSCs impacted by maternal obesity. Additionally, the integration of multi-omics data-including methylation, gene expression, and metabolomics-provided further evidence of dysfunctions in adipogenesis, erythropoietin production, cell differentiation, and DNA repair, aligning with the findings at the epigenetic level. This study reveals the significant correlation between pre-pregnancy maternal obesity and multi-omics level molecular changes in the uHSCs of offspring, particularly in DNA methylation.