利用线性光学改进基于纠缠的高维光量子计算

IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Huan-Chao Gao, Guo-Zhu Song, Hai-Rui Wei
{"title":"利用线性光学改进基于纠缠的高维光量子计算","authors":"Huan-Chao Gao,&nbsp;Guo-Zhu Song,&nbsp;Hai-Rui Wei","doi":"10.1002/andp.202400144","DOIUrl":null,"url":null,"abstract":"<p>Quantum gates are the essential block for quantum computers. High-dimensional quantum gates exhibit remarkable advantages over their 2D counterparts for some quantum information processing tasks. Here, a family of entanglement-based optical controlled-SWAP gates on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>C</mi>\n <mn>2</mn>\n </msup>\n <mo>⊗</mo>\n <msup>\n <mi>C</mi>\n <mi>d</mi>\n </msup>\n <mo>⊗</mo>\n <msup>\n <mi>C</mi>\n <mi>d</mi>\n </msup>\n </mrow>\n <annotation>$\\mathbb {C}^{2}\\otimes \\mathbb {C}^{d}\\otimes \\mathbb {C}^{d}$</annotation>\n </semantics></math> is presented. With the hybrid encoding, the control qubits and target qudits are encoded in photonic polarization and spatial degrees of freedom, respectively. The circuit is constructed using only <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>+</mo>\n <mn>3</mn>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(2+3d)$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d\\ge 2$</annotation>\n </semantics></math>) linear optics, beating an earlier result of 14 linear optics with <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d=2$</annotation>\n </semantics></math>. The circuit depth five is much lower than an earlier result of 11 with <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d=2$</annotation>\n </semantics></math>. Besides, the fidelity of the presented circuit can reach 99.4%, and it is higher than the previous counterpart with <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d=2$</annotation>\n </semantics></math>. The scheme is constructed in a deterministic way without any borrowed ancillary photons or measurement-induced nonlinearities. Moreover, the approach allows <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>&gt;</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d&amp;gt;2$</annotation>\n </semantics></math>.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Entanglement-Based High-Dimensional Optical Quantum Computation with Linear Optics\",\"authors\":\"Huan-Chao Gao,&nbsp;Guo-Zhu Song,&nbsp;Hai-Rui Wei\",\"doi\":\"10.1002/andp.202400144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum gates are the essential block for quantum computers. High-dimensional quantum gates exhibit remarkable advantages over their 2D counterparts for some quantum information processing tasks. Here, a family of entanglement-based optical controlled-SWAP gates on <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>C</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>⊗</mo>\\n <msup>\\n <mi>C</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>⊗</mo>\\n <msup>\\n <mi>C</mi>\\n <mi>d</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {C}^{2}\\\\otimes \\\\mathbb {C}^{d}\\\\otimes \\\\mathbb {C}^{d}$</annotation>\\n </semantics></math> is presented. With the hybrid encoding, the control qubits and target qudits are encoded in photonic polarization and spatial degrees of freedom, respectively. The circuit is constructed using only <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>+</mo>\\n <mn>3</mn>\\n <mi>d</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(2+3d)$</annotation>\\n </semantics></math> (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>≥</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$d\\\\ge 2$</annotation>\\n </semantics></math>) linear optics, beating an earlier result of 14 linear optics with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$d=2$</annotation>\\n </semantics></math>. The circuit depth five is much lower than an earlier result of 11 with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$d=2$</annotation>\\n </semantics></math>. Besides, the fidelity of the presented circuit can reach 99.4%, and it is higher than the previous counterpart with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$d=2$</annotation>\\n </semantics></math>. The scheme is constructed in a deterministic way without any borrowed ancillary photons or measurement-induced nonlinearities. Moreover, the approach allows <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>&gt;</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$d&amp;gt;2$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":7896,\"journal\":{\"name\":\"Annalen der Physik\",\"volume\":\"536 10\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annalen der Physik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400144\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400144","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子门是量子计算机的重要组成部分。与二维量子门相比,高维量子门在某些量子信息处理任务中表现出显著优势。本文介绍了一系列基于纠缠的光学受控-SWAP 门。通过混合编码,控制量子比特和目标量子比特分别以光子偏振和空间自由度进行编码。电路的构建只使用了()个线性光学器件,打破了之前使用 14 个线性光学器件的结果。电路深度为 5,远低于早先用......线性光学器件构建电路的 11 结果。此外,所提出电路的保真度高达 99.4%,高于之前用......线性光学器件构建的电路。该方案以确定性的方式构建,无需借用辅助光子或测量引起的非线性。此外,该方法还允许 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improved Entanglement-Based High-Dimensional Optical Quantum Computation with Linear Optics

Improved Entanglement-Based High-Dimensional Optical Quantum Computation with Linear Optics

Quantum gates are the essential block for quantum computers. High-dimensional quantum gates exhibit remarkable advantages over their 2D counterparts for some quantum information processing tasks. Here, a family of entanglement-based optical controlled-SWAP gates on C 2 C d C d $\mathbb {C}^{2}\otimes \mathbb {C}^{d}\otimes \mathbb {C}^{d}$ is presented. With the hybrid encoding, the control qubits and target qudits are encoded in photonic polarization and spatial degrees of freedom, respectively. The circuit is constructed using only ( 2 + 3 d ) $(2+3d)$ ( d 2 $d\ge 2$ ) linear optics, beating an earlier result of 14 linear optics with d = 2 $d=2$ . The circuit depth five is much lower than an earlier result of 11 with d = 2 $d=2$ . Besides, the fidelity of the presented circuit can reach 99.4%, and it is higher than the previous counterpart with d = 2 $d=2$ . The scheme is constructed in a deterministic way without any borrowed ancillary photons or measurement-induced nonlinearities. Moreover, the approach allows d > 2 $d&gt;2$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annalen der Physik
Annalen der Physik 物理-物理:综合
CiteScore
4.50
自引率
8.30%
发文量
202
审稿时长
3 months
期刊介绍: Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信