C. N. Davis, S. Toikumo, A. Hatoum, Y. Khan, B. K. Pham, S. Pakala, K. L. Feuer, J. Gelernter, S. Sanchez-Roige, R. Kember, H. Kranzler
{"title":"对 799,429 人进行的多变量、多基因组分析确定了 134 个与躯体变形特征相关的基因位点","authors":"C. N. Davis, S. Toikumo, A. Hatoum, Y. Khan, B. K. Pham, S. Pakala, K. L. Feuer, J. Gelernter, S. Sanchez-Roige, R. Kember, H. Kranzler","doi":"10.1101/2024.07.29.24310991","DOIUrl":null,"url":null,"abstract":"Somatoform traits, which manifest as persistent physical symptoms without a clear medical cause, are prevalent and pose challenges to clinical practice. Understanding the genetic basis of these disorders could improve diagnostic and therapeutic approaches. With publicly available summary statistics, we conducted a multivariate genome-wide association study (GWAS) and multi-omic analysis of four somatoform traits (fatigue, irritable bowel syndrome, pain intensity, and health satisfaction) in 799,429 individuals genetically similar to Europeans. Using genomic structural equation modeling, GWAS identified 134 loci significantly associated with a somatoform common factor, including 44 loci not significant in the input GWAS and 8 novel loci for somatoform traits. Gene-property analyses highlighted an enrichment of genes involved in synaptic transmission and enriched gene expression in 12 brain tissues. Six genes, including members of the CD300 family, had putatively causal effects mediated by protein abundance. There was substantial polygenic overlap (76-83%) between the somatoform and externalizing, internalizing, and general psychopathology factors. Somatoform polygenic scores were associated most strongly with obesity, Type 2 diabetes, tobacco use disorder, and mood/anxiety disorders in independent biobanks. Drug repurposing analyses suggested potential therapeutic targets, including MEK inhibitors. Mendelian randomization indicated potentially protective effects of gut microbiota, including Ruminococcus bromii. These biological insights provide promising avenues for treatment development.","PeriodicalId":506788,"journal":{"name":"medRxiv","volume":"22 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate, Multi-omic Analysis in 799,429 Individuals Identifies 134 Loci Associated with Somatoform Traits\",\"authors\":\"C. N. Davis, S. Toikumo, A. Hatoum, Y. Khan, B. K. Pham, S. Pakala, K. L. Feuer, J. Gelernter, S. Sanchez-Roige, R. Kember, H. Kranzler\",\"doi\":\"10.1101/2024.07.29.24310991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Somatoform traits, which manifest as persistent physical symptoms without a clear medical cause, are prevalent and pose challenges to clinical practice. Understanding the genetic basis of these disorders could improve diagnostic and therapeutic approaches. With publicly available summary statistics, we conducted a multivariate genome-wide association study (GWAS) and multi-omic analysis of four somatoform traits (fatigue, irritable bowel syndrome, pain intensity, and health satisfaction) in 799,429 individuals genetically similar to Europeans. Using genomic structural equation modeling, GWAS identified 134 loci significantly associated with a somatoform common factor, including 44 loci not significant in the input GWAS and 8 novel loci for somatoform traits. Gene-property analyses highlighted an enrichment of genes involved in synaptic transmission and enriched gene expression in 12 brain tissues. Six genes, including members of the CD300 family, had putatively causal effects mediated by protein abundance. There was substantial polygenic overlap (76-83%) between the somatoform and externalizing, internalizing, and general psychopathology factors. Somatoform polygenic scores were associated most strongly with obesity, Type 2 diabetes, tobacco use disorder, and mood/anxiety disorders in independent biobanks. Drug repurposing analyses suggested potential therapeutic targets, including MEK inhibitors. Mendelian randomization indicated potentially protective effects of gut microbiota, including Ruminococcus bromii. These biological insights provide promising avenues for treatment development.\",\"PeriodicalId\":506788,\"journal\":{\"name\":\"medRxiv\",\"volume\":\"22 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.29.24310991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.29.24310991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multivariate, Multi-omic Analysis in 799,429 Individuals Identifies 134 Loci Associated with Somatoform Traits
Somatoform traits, which manifest as persistent physical symptoms without a clear medical cause, are prevalent and pose challenges to clinical practice. Understanding the genetic basis of these disorders could improve diagnostic and therapeutic approaches. With publicly available summary statistics, we conducted a multivariate genome-wide association study (GWAS) and multi-omic analysis of four somatoform traits (fatigue, irritable bowel syndrome, pain intensity, and health satisfaction) in 799,429 individuals genetically similar to Europeans. Using genomic structural equation modeling, GWAS identified 134 loci significantly associated with a somatoform common factor, including 44 loci not significant in the input GWAS and 8 novel loci for somatoform traits. Gene-property analyses highlighted an enrichment of genes involved in synaptic transmission and enriched gene expression in 12 brain tissues. Six genes, including members of the CD300 family, had putatively causal effects mediated by protein abundance. There was substantial polygenic overlap (76-83%) between the somatoform and externalizing, internalizing, and general psychopathology factors. Somatoform polygenic scores were associated most strongly with obesity, Type 2 diabetes, tobacco use disorder, and mood/anxiety disorders in independent biobanks. Drug repurposing analyses suggested potential therapeutic targets, including MEK inhibitors. Mendelian randomization indicated potentially protective effects of gut microbiota, including Ruminococcus bromii. These biological insights provide promising avenues for treatment development.