利用变压器模型推进人体姿态估计:实验方法

Wei Wang
{"title":"利用变压器模型推进人体姿态估计:实验方法","authors":"Wei Wang","doi":"10.30574/wjaets.2024.12.2.0261","DOIUrl":null,"url":null,"abstract":"This paper explores the integration of Transformer architectures into human pose estimation, a critical task in computer vision that involves detecting human figures and predicting their poses by identifying body joint positions. With applications ranging from enhancing interactive gaming experiences to advancing biomechanical analyses, human pose estimation demands high accuracy and flexibility, particularly in dynamic and partially occluded scenes. This study hypothesizes that Transformers, renowned for their ability to manage long-range dependencies and focus on relevant data parts through self-attention mechanisms, can significantly outperform existing deep learning methods such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). We introduce the PoseTransformer, a hybrid model that combines the precise feature extraction capabilities of CNNs with the global contextual awareness of Transformers, aiming to set new standards for accuracy and adaptability in pose estimation tasks. The model's effectiveness is demonstrated through rigorous testing on benchmark datasets, showing substantial improvements over traditional approaches, especially in complex scenarios.","PeriodicalId":275182,"journal":{"name":"World Journal of Advanced Engineering Technology and Sciences","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing human pose estimation with transformer models: An experimental approach\",\"authors\":\"Wei Wang\",\"doi\":\"10.30574/wjaets.2024.12.2.0261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the integration of Transformer architectures into human pose estimation, a critical task in computer vision that involves detecting human figures and predicting their poses by identifying body joint positions. With applications ranging from enhancing interactive gaming experiences to advancing biomechanical analyses, human pose estimation demands high accuracy and flexibility, particularly in dynamic and partially occluded scenes. This study hypothesizes that Transformers, renowned for their ability to manage long-range dependencies and focus on relevant data parts through self-attention mechanisms, can significantly outperform existing deep learning methods such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). We introduce the PoseTransformer, a hybrid model that combines the precise feature extraction capabilities of CNNs with the global contextual awareness of Transformers, aiming to set new standards for accuracy and adaptability in pose estimation tasks. The model's effectiveness is demonstrated through rigorous testing on benchmark datasets, showing substantial improvements over traditional approaches, especially in complex scenarios.\",\"PeriodicalId\":275182,\"journal\":{\"name\":\"World Journal of Advanced Engineering Technology and Sciences\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Advanced Engineering Technology and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30574/wjaets.2024.12.2.0261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Advanced Engineering Technology and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30574/wjaets.2024.12.2.0261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这是计算机视觉领域的一项重要任务,包括检测人形并通过识别身体关节位置预测其姿势。人体姿态估计的应用范围很广,从增强互动游戏体验到推进生物力学分析,都要求高精度和灵活性,尤其是在动态和部分遮挡的场景中。本研究假设,变形金刚因其能够管理长距离依赖关系并通过自我关注机制聚焦于相关数据部分而闻名,能够显著超越卷积神经网络(CNN)和递归神经网络(RNN)等现有深度学习方法。我们介绍的 PoseTransformer 是一种混合模型,它结合了 CNN 的精确特征提取能力和 Transformer 的全局上下文感知能力,旨在为姿势估计任务的准确性和适应性设定新标准。通过在基准数据集上进行严格测试,证明了该模型的有效性,与传统方法相比,尤其是在复杂场景中,该模型有了大幅改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing human pose estimation with transformer models: An experimental approach
This paper explores the integration of Transformer architectures into human pose estimation, a critical task in computer vision that involves detecting human figures and predicting their poses by identifying body joint positions. With applications ranging from enhancing interactive gaming experiences to advancing biomechanical analyses, human pose estimation demands high accuracy and flexibility, particularly in dynamic and partially occluded scenes. This study hypothesizes that Transformers, renowned for their ability to manage long-range dependencies and focus on relevant data parts through self-attention mechanisms, can significantly outperform existing deep learning methods such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). We introduce the PoseTransformer, a hybrid model that combines the precise feature extraction capabilities of CNNs with the global contextual awareness of Transformers, aiming to set new standards for accuracy and adaptability in pose estimation tasks. The model's effectiveness is demonstrated through rigorous testing on benchmark datasets, showing substantial improvements over traditional approaches, especially in complex scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信