跟踪景观变化和环境条件的先进遥感技术

Chibuike Godswill Nzeanorue, Raphael Aduramimo Olusola, Peter Dayo Fakoyede, Merinubi Sunday Daramola, Ewemade Cornelius Enabulele, Agada Olowu Innocent, Adeleke Olaniyi Benjamin, Eze Kelechi Nnaji, Mame Diarra Bousso Diouf, Grace Agbons Aruya
{"title":"跟踪景观变化和环境条件的先进遥感技术","authors":"Chibuike Godswill Nzeanorue, Raphael Aduramimo Olusola, Peter Dayo Fakoyede, Merinubi Sunday Daramola, Ewemade Cornelius Enabulele, Agada Olowu Innocent, Adeleke Olaniyi Benjamin, Eze Kelechi Nnaji, Mame Diarra Bousso Diouf, Grace Agbons Aruya","doi":"10.30574/wjarr.2024.23.1.2057","DOIUrl":null,"url":null,"abstract":"The integration of cutting-edge remote sensing technologies, biophysical principles, and advanced spatial statistics enables innovative landscape analysis across various spatial and temporal scales. Traditional approaches relied on classification methods and indices derived from multi-spectral imagery to assess landscape degradation. However, modern techniques can extract biophysical indices like leaf area index and canopy chemistry from satellite imagery. Long-term remote sensing archives (e.g., Landsat, AVHRR) facilitate retrospective studies of landscape changes and trajectories. Recent advancements in sensors and analysis techniques, such as sub-pixel classifications and continuous fields, have improved the accuracy of variable retrieval (e.g., Albedo, chlorophyll concentration). These developments enable powerful monitoring tools for land use/cover change detection, leading to a better understanding of landscape dynamics and the mapping of previously unexplored features. However, a trade-off exists between high spatial and high temporal resolution depending on the platform used.","PeriodicalId":23739,"journal":{"name":"World Journal of Advanced Research and Reviews","volume":"13 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced remote sensing technologies for tracking landscape changes and environmental conditions\",\"authors\":\"Chibuike Godswill Nzeanorue, Raphael Aduramimo Olusola, Peter Dayo Fakoyede, Merinubi Sunday Daramola, Ewemade Cornelius Enabulele, Agada Olowu Innocent, Adeleke Olaniyi Benjamin, Eze Kelechi Nnaji, Mame Diarra Bousso Diouf, Grace Agbons Aruya\",\"doi\":\"10.30574/wjarr.2024.23.1.2057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of cutting-edge remote sensing technologies, biophysical principles, and advanced spatial statistics enables innovative landscape analysis across various spatial and temporal scales. Traditional approaches relied on classification methods and indices derived from multi-spectral imagery to assess landscape degradation. However, modern techniques can extract biophysical indices like leaf area index and canopy chemistry from satellite imagery. Long-term remote sensing archives (e.g., Landsat, AVHRR) facilitate retrospective studies of landscape changes and trajectories. Recent advancements in sensors and analysis techniques, such as sub-pixel classifications and continuous fields, have improved the accuracy of variable retrieval (e.g., Albedo, chlorophyll concentration). These developments enable powerful monitoring tools for land use/cover change detection, leading to a better understanding of landscape dynamics and the mapping of previously unexplored features. However, a trade-off exists between high spatial and high temporal resolution depending on the platform used.\",\"PeriodicalId\":23739,\"journal\":{\"name\":\"World Journal of Advanced Research and Reviews\",\"volume\":\"13 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Advanced Research and Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30574/wjarr.2024.23.1.2057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Advanced Research and Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30574/wjarr.2024.23.1.2057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将尖端遥感技术、生物物理原理和先进的空间统计技术相结合,可以在各种空间和时间尺度上进行创新性景观分析。传统方法依赖分类方法和从多光谱图像中提取的指数来评估景观退化。然而,现代技术可以从卫星图像中提取叶面积指数和冠层化学等生物物理指数。长期遥感档案(如大地遥感卫星、高级甚高分辨率辐射计)有助于对景观变化和轨迹进行回顾性研究。传感器和分析技术(如亚像素分类和连续场)的最新进展提高了变量检索(如反照率、叶绿素浓度)的准确性。这些发展为检测土地利用/覆盖变化提供了强大的监测工具,使人们能够更好地了解地貌动态,并绘制以前未探索过的地貌图。然而,根据所使用的平台,高空间分辨率和高时间分辨率之间存在权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced remote sensing technologies for tracking landscape changes and environmental conditions
The integration of cutting-edge remote sensing technologies, biophysical principles, and advanced spatial statistics enables innovative landscape analysis across various spatial and temporal scales. Traditional approaches relied on classification methods and indices derived from multi-spectral imagery to assess landscape degradation. However, modern techniques can extract biophysical indices like leaf area index and canopy chemistry from satellite imagery. Long-term remote sensing archives (e.g., Landsat, AVHRR) facilitate retrospective studies of landscape changes and trajectories. Recent advancements in sensors and analysis techniques, such as sub-pixel classifications and continuous fields, have improved the accuracy of variable retrieval (e.g., Albedo, chlorophyll concentration). These developments enable powerful monitoring tools for land use/cover change detection, leading to a better understanding of landscape dynamics and the mapping of previously unexplored features. However, a trade-off exists between high spatial and high temporal resolution depending on the platform used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信