道路感知:智能道路监控系统

Naina Nimisha, Subrat Pandey, Siddhant Priyadarshi, Dr. Anusha Preetham
{"title":"道路感知:智能道路监控系统","authors":"Naina Nimisha, Subrat Pandey, Siddhant Priyadarshi, Dr. Anusha Preetham","doi":"10.22214/ijraset.2024.63499","DOIUrl":null,"url":null,"abstract":"Abstract: This project proposes a system for detecting traffic signals, lane layouts, and speed bumps in road infrastructure using video footage through machine learning. Lane detection is performed through region of interest selection and edge detection. Lane lines are extracted based on specific characteristics. A deep learning model is trained to detect lane boundaries and road curvature. The system provides real-time alerts and recommendations to enhance road safety and driving experiences.","PeriodicalId":13718,"journal":{"name":"International Journal for Research in Applied Science and Engineering Technology","volume":"44 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Road Sense: Intelligent Road Monitoring System\",\"authors\":\"Naina Nimisha, Subrat Pandey, Siddhant Priyadarshi, Dr. Anusha Preetham\",\"doi\":\"10.22214/ijraset.2024.63499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: This project proposes a system for detecting traffic signals, lane layouts, and speed bumps in road infrastructure using video footage through machine learning. Lane detection is performed through region of interest selection and edge detection. Lane lines are extracted based on specific characteristics. A deep learning model is trained to detect lane boundaries and road curvature. The system provides real-time alerts and recommendations to enhance road safety and driving experiences.\",\"PeriodicalId\":13718,\"journal\":{\"name\":\"International Journal for Research in Applied Science and Engineering Technology\",\"volume\":\"44 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Research in Applied Science and Engineering Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22214/ijraset.2024.63499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Research in Applied Science and Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22214/ijraset.2024.63499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:该项目提出了一种通过机器学习利用视频录像检测道路基础设施中的交通信号、车道布局和减速带的系统。车道检测是通过感兴趣区域选择和边缘检测进行的。车道线根据特定特征提取。对深度学习模型进行训练,以检测车道边界和道路曲率。该系统可提供实时警报和建议,以增强道路安全和驾驶体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Road Sense: Intelligent Road Monitoring System
Abstract: This project proposes a system for detecting traffic signals, lane layouts, and speed bumps in road infrastructure using video footage through machine learning. Lane detection is performed through region of interest selection and edge detection. Lane lines are extracted based on specific characteristics. A deep learning model is trained to detect lane boundaries and road curvature. The system provides real-time alerts and recommendations to enhance road safety and driving experiences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信