利用多元线性回归预测坤甸市的犯罪案件数量

Fadillah Bergas, Sucipto, Asrul Abdullah
{"title":"利用多元线性回归预测坤甸市的犯罪案件数量","authors":"Fadillah Bergas, Sucipto, Asrul Abdullah","doi":"10.37373/tekno.v11i2.1025","DOIUrl":null,"url":null,"abstract":"This study aims to develop a predictive model for the crime rate in the Police Resort Area of Kota (POLRESTA) Pontianak using the Multiple Linear Regression method based on secondary data obtained from the Criminal Investigation Unit of POLRESTA Pontianak. The utilization of descriptive statistical techniques and data visualization aids in identifying relevant features that enrich the information within the model. The evaluation results indicate that this model performs well in both modeling and predicting crime rates in Kota Pontianak. Despite the variations in error rates between training and testing data, the model still demonstrates its proficiency in predicting known data. The testing results also reveal that the Mean Absolute Percentage Error (MAPE) values for each crime category exhibit variations in the testing dataset, with MAPE for \"Berat\" increasing to 12.91%, MAPE for \"Sedang\" increasing to 30.11%, and MAPE for \"Ringan\" increasing to 26.59%. Consequently, this study concludes that the Multiple Linear Regression method holds potential as an effective tool for decision-making and the development of strategies to combat criminal activities in Kota Pontianak","PeriodicalId":518434,"journal":{"name":"TEKNOSAINS : Jurnal Sains, Teknologi dan Informatika","volume":"23 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of the level of crime cases using multiple linear regression in the city of Pontianak\",\"authors\":\"Fadillah Bergas, Sucipto, Asrul Abdullah\",\"doi\":\"10.37373/tekno.v11i2.1025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to develop a predictive model for the crime rate in the Police Resort Area of Kota (POLRESTA) Pontianak using the Multiple Linear Regression method based on secondary data obtained from the Criminal Investigation Unit of POLRESTA Pontianak. The utilization of descriptive statistical techniques and data visualization aids in identifying relevant features that enrich the information within the model. The evaluation results indicate that this model performs well in both modeling and predicting crime rates in Kota Pontianak. Despite the variations in error rates between training and testing data, the model still demonstrates its proficiency in predicting known data. The testing results also reveal that the Mean Absolute Percentage Error (MAPE) values for each crime category exhibit variations in the testing dataset, with MAPE for \\\"Berat\\\" increasing to 12.91%, MAPE for \\\"Sedang\\\" increasing to 30.11%, and MAPE for \\\"Ringan\\\" increasing to 26.59%. Consequently, this study concludes that the Multiple Linear Regression method holds potential as an effective tool for decision-making and the development of strategies to combat criminal activities in Kota Pontianak\",\"PeriodicalId\":518434,\"journal\":{\"name\":\"TEKNOSAINS : Jurnal Sains, Teknologi dan Informatika\",\"volume\":\"23 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TEKNOSAINS : Jurnal Sains, Teknologi dan Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37373/tekno.v11i2.1025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEKNOSAINS : Jurnal Sains, Teknologi dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37373/tekno.v11i2.1025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在根据从坤甸哥打(POLRESTA)警察度假区刑事调查组获得的二手数据,采用多元线性回归法建立一个坤甸哥打(POLRESTA)警察度假区犯罪率预测模型。描述性统计技术和数据可视化的使用有助于识别相关特征,丰富模型中的信息。评估结果表明,该模型在模拟和预测哥打坤甸的犯罪率方面表现良好。尽管训练数据和测试数据之间的误差率存在差异,但该模型仍能熟练预测已知数据。测试结果还显示,在测试数据集中,每个犯罪类别的平均绝对百分比误差(MAPE)值都有所变化,"Berat "的 MAPE 增加到 12.91%,"Sedang "的 MAPE 增加到 30.11%,"Ringan "的 MAPE 增加到 26.59%。因此,本研究得出结论,多元线性回归方法有望成为哥打坤甸打击犯罪活动的决策和战略制定的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of the level of crime cases using multiple linear regression in the city of Pontianak
This study aims to develop a predictive model for the crime rate in the Police Resort Area of Kota (POLRESTA) Pontianak using the Multiple Linear Regression method based on secondary data obtained from the Criminal Investigation Unit of POLRESTA Pontianak. The utilization of descriptive statistical techniques and data visualization aids in identifying relevant features that enrich the information within the model. The evaluation results indicate that this model performs well in both modeling and predicting crime rates in Kota Pontianak. Despite the variations in error rates between training and testing data, the model still demonstrates its proficiency in predicting known data. The testing results also reveal that the Mean Absolute Percentage Error (MAPE) values for each crime category exhibit variations in the testing dataset, with MAPE for "Berat" increasing to 12.91%, MAPE for "Sedang" increasing to 30.11%, and MAPE for "Ringan" increasing to 26.59%. Consequently, this study concludes that the Multiple Linear Regression method holds potential as an effective tool for decision-making and the development of strategies to combat criminal activities in Kota Pontianak
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信