{"title":"基于沃尔什-哈达玛德变换的 Gabor 滤波特征提取方法和 GLCM 特征提取方法在脑肿瘤检测中的性能分析","authors":"Rita B. Patil","doi":"10.22214/ijraset.2024.63543","DOIUrl":null,"url":null,"abstract":"Abstract: Brain tumor detection through MRI imaging is a crucial step in medical diagnostics. This paper presents a comparative performance analysis of two feature extraction methods: the Walsh-Hadamard Transform (WHT) based Gabor Filter method and the Gray-Level Co-occurrence Matrix (GLCM) method. We evaluate these techniques based on accuracy, computational efficiency, and robustness using a benchmark MRI dataset. Our results indicate the strengths and limitations of each method, providing insights for their application in automated brain tumor detection systems.","PeriodicalId":13718,"journal":{"name":"International Journal for Research in Applied Science and Engineering Technology","volume":"54 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Walsh-Hadamard Transform-Based Gabor Filter Feature Extraction Method and GLCM Feature Extraction Method for Brain Tumor Detection\",\"authors\":\"Rita B. Patil\",\"doi\":\"10.22214/ijraset.2024.63543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: Brain tumor detection through MRI imaging is a crucial step in medical diagnostics. This paper presents a comparative performance analysis of two feature extraction methods: the Walsh-Hadamard Transform (WHT) based Gabor Filter method and the Gray-Level Co-occurrence Matrix (GLCM) method. We evaluate these techniques based on accuracy, computational efficiency, and robustness using a benchmark MRI dataset. Our results indicate the strengths and limitations of each method, providing insights for their application in automated brain tumor detection systems.\",\"PeriodicalId\":13718,\"journal\":{\"name\":\"International Journal for Research in Applied Science and Engineering Technology\",\"volume\":\"54 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Research in Applied Science and Engineering Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22214/ijraset.2024.63543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Research in Applied Science and Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22214/ijraset.2024.63543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Analysis of Walsh-Hadamard Transform-Based Gabor Filter Feature Extraction Method and GLCM Feature Extraction Method for Brain Tumor Detection
Abstract: Brain tumor detection through MRI imaging is a crucial step in medical diagnostics. This paper presents a comparative performance analysis of two feature extraction methods: the Walsh-Hadamard Transform (WHT) based Gabor Filter method and the Gray-Level Co-occurrence Matrix (GLCM) method. We evaluate these techniques based on accuracy, computational efficiency, and robustness using a benchmark MRI dataset. Our results indicate the strengths and limitations of each method, providing insights for their application in automated brain tumor detection systems.