Arnita Arnita, F. Marpaung, Fanny Ramadhani, Dewan Dinata
{"title":"绘制和预测北苏门答腊贫困状况的机器学习:数据驱动方法","authors":"Arnita Arnita, F. Marpaung, Fanny Ramadhani, Dewan Dinata","doi":"10.17576/jsm-2024-5307-18","DOIUrl":null,"url":null,"abstract":"Discussing poverty is crucial because it affects many facets of society, including socioeconomic disparity, crime, and the inability to obtain high-quality education. One of the provinces with the highest poverty rate in Indonesia is North Sumatra. A strategy is required to gather accurate data to effectively reduce poverty. Poverty mapping and prediction were conducted in North Sumatra to get a precise spatial distribution of poverty, the operation of the poverty model, and forecasting using machine learning (ML). Poverty prediction was conducted using a random forest (RF) algorithm and poverty mapping was conducted using the K-Means algorithm. The poverty mapping showed a significant inertia value decline in the third and fourth clusters of the elbow graph. The third cluster (0.313) was superior to the fourth cluster (0.244) in the silhouette index. Thus, there were three poverty clusters - low, medium, and high - that were used in the model. The best model was created using the grid search cross-validation, while the best prediction results were created using the RF algorithm, with the following parameters: n-estimator = 50, max depth = 10, min samples split = 2, and min samples leaf = 1. The mean squared error (MSE) of the RF model's predictions was 0.002617, or satisfactory precision.","PeriodicalId":21366,"journal":{"name":"Sains Malaysiana","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning for Mapping and Forecasting Poverty in North Sumatera: A Data-Driven Approach\",\"authors\":\"Arnita Arnita, F. Marpaung, Fanny Ramadhani, Dewan Dinata\",\"doi\":\"10.17576/jsm-2024-5307-18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discussing poverty is crucial because it affects many facets of society, including socioeconomic disparity, crime, and the inability to obtain high-quality education. One of the provinces with the highest poverty rate in Indonesia is North Sumatra. A strategy is required to gather accurate data to effectively reduce poverty. Poverty mapping and prediction were conducted in North Sumatra to get a precise spatial distribution of poverty, the operation of the poverty model, and forecasting using machine learning (ML). Poverty prediction was conducted using a random forest (RF) algorithm and poverty mapping was conducted using the K-Means algorithm. The poverty mapping showed a significant inertia value decline in the third and fourth clusters of the elbow graph. The third cluster (0.313) was superior to the fourth cluster (0.244) in the silhouette index. Thus, there were three poverty clusters - low, medium, and high - that were used in the model. The best model was created using the grid search cross-validation, while the best prediction results were created using the RF algorithm, with the following parameters: n-estimator = 50, max depth = 10, min samples split = 2, and min samples leaf = 1. The mean squared error (MSE) of the RF model's predictions was 0.002617, or satisfactory precision.\",\"PeriodicalId\":21366,\"journal\":{\"name\":\"Sains Malaysiana\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sains Malaysiana\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.17576/jsm-2024-5307-18\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sains Malaysiana","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.17576/jsm-2024-5307-18","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Machine Learning for Mapping and Forecasting Poverty in North Sumatera: A Data-Driven Approach
Discussing poverty is crucial because it affects many facets of society, including socioeconomic disparity, crime, and the inability to obtain high-quality education. One of the provinces with the highest poverty rate in Indonesia is North Sumatra. A strategy is required to gather accurate data to effectively reduce poverty. Poverty mapping and prediction were conducted in North Sumatra to get a precise spatial distribution of poverty, the operation of the poverty model, and forecasting using machine learning (ML). Poverty prediction was conducted using a random forest (RF) algorithm and poverty mapping was conducted using the K-Means algorithm. The poverty mapping showed a significant inertia value decline in the third and fourth clusters of the elbow graph. The third cluster (0.313) was superior to the fourth cluster (0.244) in the silhouette index. Thus, there were three poverty clusters - low, medium, and high - that were used in the model. The best model was created using the grid search cross-validation, while the best prediction results were created using the RF algorithm, with the following parameters: n-estimator = 50, max depth = 10, min samples split = 2, and min samples leaf = 1. The mean squared error (MSE) of the RF model's predictions was 0.002617, or satisfactory precision.
期刊介绍:
Sains Malaysiana is a refereed journal committed to the advancement of scholarly knowledge and research findings of the several branches of science and technology. It contains articles on Earth Sciences, Health Sciences, Life Sciences, Mathematical Sciences and Physical Sciences. The journal publishes articles, reviews, and research notes whose content and approach are of interest to a wide range of scholars. Sains Malaysiana is published by the UKM Press an its autonomous Editorial Board are drawn from the Faculty of Science and Technology, Universiti Kebangsaan Malaysia. In addition, distinguished scholars from local and foreign universities are appointed to serve as advisory board members and referees.